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Preface

The present volume contains the contributions for the 9th European Conference
on Genetic Programming (EuroGP 2006). The conference took place during
April 10-12, 2006 in Budapest, Hungary. EuroGP is a well-established confer-
ence and the only one exclusively devoted to genetic programming worldwide.
EuroGP began as a workshop in 1998 in Paris, and has been held annually since
then, becoming a conference in Edinburgh in 2000. All previous proceedings have
been published by Springer in the Lecture Notes in Computer Science series.
More recently, EuroGP has been co-located with EvoCOP 2006, the 6th Euro-
pean Conference on Evolutionary Computation in Combinatorial Optimization,
and the EvoWorkshops, focusing on applications of evolutionary computation,
resulting in the largest combined event dedicated to evolutionary computation
in Europe.

Genetic programming (GP) is evolutionary computation that solves complex
problems or tasks by evolving and adapting a population of computer programs,
using Darwinian evolution and Mendelian genetics as its sources of inspiration.
The 32 papers included in these proceedings address fundamental and theoreti-
cal issues, along with a wide variety of papers dealing with different application
areas, such as computer science, engineering, machine learning, Kolmogorov com-
plexity, biology and computational design, showing that GP is a powerful and
practical problem-solving paradigm.

A rigorous, double-blind, selection mechanism was applied to 59 submitted
papers, that resulted in the acceptance of 21 plenary talks (36% acceptance rate)
and 11 poster presentations (54% global acceptance rate for talks and posters).
Each paper was reviewed by three members of the international Program Com-
mittee, each with post-doctoral experience and selected for expertise in their
own field. Assignment was done manually, by trying to match as closely as pos-
sible each reviewer’s domain of expertise to the topics covered by the paper.
The results of this rigorous selection process are reflected in the quality of the
contributions published within this volume.

We would like to express our sincere gratitude to the two internationally
renowned invited speakers, who gave the keynote talks: Richard J. Terrile, as-
tronomer, Director of the Center for Evolutionary Computation and Automated
Design at NASA’s Jet Propulsion Laboratory, and Stefan Voß, Chair and Direc-
tor of the Institute of Information Systems at the Faculty of Hamburg.

The success of this conference results from the input of many people, to whom
we would like to express our appreciation. Firstly, we thank the members of the
Program Committee for their time and involvement. Their reviews were often
very thorough and constructive, giving the authors valuable advice on how to
improve their papers for the final publication. The local organizers and Judit
Megyery have done an extraordinary job that was a key contribution to the
success of this conference. Last but not least, the deep involvement of Jennifer
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Willies and the School of Computing, Napier University, in the organization of
this event was of paramount importance. Her professionalism and organizational
qualities allowed for a smooth-running, enjoyable conference.

We thank the Artpool Art Research Center of Budapest, and especially György
Galántai, for offering space and expertise without which the wonderful evolution-
ary art and music exhibition associated with the conference would not have been
possible.

April 2006 Pierre Collet
Marco Tomassini

Marc Ebner
Steven Gustafson

Anikó Ekárt



Organization

EuroGP 2006 was organized by EvoGP, the EvoNet Working Group on Genetic
Programming.

Organizing Committee

Program Co-chairs: Pierre Collet (Université du Littoral Côte d’Opale, France)
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Christian Gagné, Marc Schoenauer, Marc Parizeau,
Marco Tomassini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Geometric Crossover for Biological Sequences
Alberto Moraglio, Riccardo Poli, Rolv Seehuus . . . . . . . . . . . . . . . . . . . . . 121

Incentive Method to Handle Constraints in Evolutionary Algorithms
with a Case Study

Edward Tsang, Nanlin Jin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133



X Table of Contents

Iterative Filter Generation Using Genetic Programming
Marc Segond, Denis Robilliard, Cyril Fonlupt . . . . . . . . . . . . . . . . . . . . . . 145

Iterative Prototype Optimisation with Evolved Improvement Steps
Jiri Kubalik, Jan Faigl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

Learning Recursive Functions with Object Oriented Genetic
Programming

Alexandros Agapitos, Simon M. Lucas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

Negative Slope Coefficient: A Measure to Characterize Genetic
Programming Fitness Landscapes

Leonardo Vanneschi, Marco Tomassini, Philippe Collard,
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802.11 De-authentication Attack Detection
Using Genetic Programming

Patrick LaRoche and A. Nur Zincir-Heywood

Faculty of Computer Science, Dalhousie University,
Halifax, Nova Scotia, B3H 1W5, Canada

plaroche@cs.dal.ca
zincir@cs.dal.ca

Abstract. This paper presents a genetic programming approach to de-
tect deauthentication attacks on wireless networks based on the 802.11
protocol. To do so we focus on developing an appropriate fitness function
and feature set. Results show that the intrusion system developed not
only performs incredibly well - 100 percent detection rate and 0.5 percent
false positive rate - but also developed a solution that is general enough
to detect similar attacks, such as disassociation attacks, that were not
present in the training data.

1 Introduction

As computer networks have become more prevalent, in varying forms, different
protocols are being developed in order to support alternative networking under
different environments. One such protocol is 802.11, where this describes a stan-
dard for communication over wireless connections. This protocol, also known as
WiFi, has been deployed in a growing number of locations resulting in a diversity
of purposes, from providing a household with a wireless network, to supporting
an entire office building. Due to this growing popularity and exposure, more and
more exploits are being discovered, undermining the use of the 802.11 network
protocol.

The very nature of a wireless network, no matter the protocol being used,
opens the network up to vulnerabilities not present in wired networks. These is-
sues arise from the fact that data is being transfered over the air, where anyone
with the appropriate device can intercept. For this reason the 802.11 network
provides many security features, such as encryption and client verification. These
measures, as important as they are, have received the majority of emphasis. Un-
fortunately, they do not cover all the possible weaknesses in the 802.11 protocol.
In our work we look at the issue of maintaining the availability of the network
itself. That is to say there are well known exploits with the 802.11 protocol that
allow users of malicious intent to disrupt the use of the network, either for a
specific client or the entire network. This in return disrupts the availability of
the network for its users; whereas the availability and ease of use represent one
of the main reasons behind the widespread deployment of WiFi networks.

P. Collet et al. (Eds.): EuroGP 2006, LNCS 3905, pp. 1–12, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 P. LaRoche and A.N. Zincir-Heywood

Traditionally, intrusion detection systems (IDSs) are used to detect attacks
against the integrity, confidentiality and availability of computer networks [1].
In order to build effective IDSs and automate the detection process, various
machine learning and artificial intelligence techniques have been proposed. These
techniques include neural networks [2], data mining [3], decision trees [4], genetic
algorithms (GA) [5, 6], and genetic programming (GP) [7, 8, 9]. In general, data
mining techniques are introduced to identify key features and machine learning
and AI techniques are introduced to automate the classification of normal and
attack traffic / behavior on the network. To the best of authors’ knowledge,
works utilizing genetic algorithms and genetic programming were all based on
the TCP/IP protocol stack. This corresponds to the third and fourth layers of the
network stack. On a WiFi network running a TCP/IP protocol stack, however,
their exist attacks based on vulnerabilities in the physical and data link layers,
i.e. the first and second layers respectively.

Thus, past work applying evolutionary methods to network intrusion detec-
tion has focused on connection based attacks. In doing so, much progress has
been made in providing an efficient and effective intrusion detection system (IDS)
using genetic programming as the tool to create the rules in which to detect at-
tacks [7]. This does not necessarily make a GP or GA based IDS effective in
detecting network protocol specific attacks at layer one and two, such as in the
case of WiFi networks.

In this paper we present our work towards developing a GP based IDS for
WiFi networks. By using past research as a starting point, we aim to build on
the past successes (quick training time, transparent solutions) while adapting to
the challenges of intrusion detection on the 802.11 network. The remainder of
this paper first details background information on 802.11 networks in Section 2,
followed by a description of the GP that we have implemented in Section 3. In
Section 4, we detail our approach for developing our GP based IDS, followed by
Section 5, in which we list the performance of our GP based IDS, and concluding
with Section 6 where we discuss our findings and how we will be proceeding with
our work.

2 802.11 - WiFi Networks

The network protocol we focus on in our work is that of the 802.11b network
(WiFi). WiFi networks have increased in popularity over the past few years, so
much so that their use as a last mile solution for Internet connection has be-
come common place, not only with homes but businesses alike. It has become so
popular, that in the year 2001, the market for 802.11 based networks exceeded
$1 Billion Dollars [10]. This wide spread (and growing) deployment of WiFi net-
works makes them a growing area for research, both in improvement of service,
but also in security and reliance of the service they provide. In this section, we
discuss the basics of WiFi networks, current security features and the known
exploits of the WiFi protocol. This is not an exhaustive description of the WiFi
protocol, as that is beyond the scope of this paper.
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2.1 Management Frames

WiFi networks have a series of MAC frame types, as described in the IEEE
802.11 Standard (see [11]). Of concern for our work are the management frames.
The management frame type allows clients to associate with (or conversely dis-
associate from) the network via an access point (AP), as well as maintaining
a channel for communications to proceed. We focus on a subset of the man-
agement frame subtypes; Association request , Deauthentication and Disasso-
ciation. These subtypes allow clients to join, leave, and be told to leave WiFi
networks.

In order for a client to establish a connection with an existing WiFi network,
it first must associate with an AP. This association is established through search-
ing for an access point on a specific BSSID (basic service set identification, an
identifier of a specific WiFi network) on a given channel (usually on a range of
channels). Once the client has found an access point on the desired BSSID and
channel, the following procedure is used to establish a connection with the AP
(simplified from [11]) :

1. The client can transmit an association request to an AP with which that
client is authenticated.

2. If an Association Response frame is received with a status value of successful,
the client is now associated with the AP.

3. If an Association Response frame is received with a status value other than
successful or a timeout value passes, the client is not associated with the AP.

This procedure relies on a one-way trust, the client trusting the validity of
the AP, not visa versa. This distinction is important. At no time does the client
require that the AP prove that it is a valid AP.

A procedure exists for a client to disassociate itself from a network. As de-
scribed in the IEEE 802.11 Standard ([11]), in order to disassociate, the client
must send a disassociation subtype management frame. This frame type can be
sent in either direction, from the client to the AP or from the AP to the client.
The frame contains the hardware address of the client that is being disassociated
(the broadcast address in the case of an AP disassociating with all associated
clients). It also contains the hardware address of the AP with which the client
is currently associated. [11]

Similarly, a client or AP can invalidate an active authenticated connection
through the use of de-authentication subtype of the management frame type.
This frame can again be sent from a client to an AP, an AP to a client, AP to
AP, or even client to client. This frame subtype contains the same information
as the disassociation subtype.

2.2 Known Exploits

The 802.11 MAC layer includes functionality that addresses issues specific to a
wireless network [10]. For example, the ability to search for networks, broadcast
networks, join and leave networks are all taken care of by MAC layer frames,
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specifically management frames. As mentioned earlier (and in other works [10]),
there is an implicit trust in the ethernet address of the sender of a management
frame. This implicit trust opens up the door to a group of Denial of Service
(DoS) attacks on the 802.11 network. If a malicious client, or hacker, fakes its
ethernet address (a trivial task with most operating systems and a small Internet
search) it can then send management frames onto an 802.11 network with the
network assuming the hardware address is valid. This can cause problems if the
hardware address has been set to that of another valid client, or to that of a
valid access point.

DoS attacks are not the only exploits or security weaknesses that exist on
802.11 networks. Much work has been done in addressing other security
concerns. Papers such as [12] and [13] point out security weaknesses of the
encryption algorithms implemented on 802.11 networks, and that is assuming
the network administrators have even enabled encryption. This is not always
a fair assumption given the wide spread adoption of 802.11 network for home
networking, where the network administrator could be assumed to have no net-
working knowledge at all. This has resulted in a slew of acronyms, protocols
and protocol extensions (WEP, WPA, RADIUS, 802.11g, 802.11i, 802.1X, etc)
that have all tackled issues from speed to security concerns; however, to the
best of our knowledge none of these deal with ensuring that the network re-
mains usable. By this we mean that it is still possible to perform simple forms
of DoS attacks even on the newest and latest protocol version of 802.11. For this
purpose, we have chosen to focus on a specific subset of DoS attacks, described
below.

2.3 De-authentication DoS Attacks

The DoS attack we focus on in this work is that caused by the attacker sending
de-authentication frames onto the wireless network . An attacker chooses a target
on the network (which has been gathered by actively monitoring the 802.11
network traffic using a tool such as kismet [14]) and then spoofs their ethernet
address. At this point, the attacker then sends a de-authentication attack to the
access point in which the target is associated. This causes the access point to
send a de-authentication frame back at the target, removing the target from the
network, preventing it from sending or receiving any further communications.
The duration of which the target remains removed from the network depends
on the frequency in which it attempts to regain network access.

This attack, simple in its implementation, is quite powerful for several reasons.
The first being that the attacker can choose the scope of the attack, be it a single
network client, several, or an entire network (by choosing the access point itself
as the spoofed address). The result being that an attacker can completely disrupt
all communications on a single network, no matter how many clients the network
may have. Secondly, if the attacker has targeted a single client, once the client
is removed from the network the attacker can then continue with several other
attacks, such as a man in the middle attack [15].
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3 GP Based Intrusion Detection Systems

In order for us to be able to detect attacks that exploit the above mentioned
vulnerabilities in the 802.11 standard, we have applied a genetic programming
based intrusion detection system (IDS). Due to previous success in application
of GP based IDSs to wired networks [7], we have chosen to take the same ap-
proach in creating an IDS for 802.11 networks. In previous work, a page based
linearly structured GP was employed [16] as well as the utilization of a RSS-DSS
algorithm which scales GP to data sets consisting of hundred of thousands of
exemplars [7]. For the work we present here, we have used a similar approach,
but concentrated on the devopment of an appropriate fitness function and fea-
ture set. For this work, our goal is to not only to develop a machine learning
technique to detect network intrusions on 802.11 networks with a high accuracy
and low false positive rate, but to also be able to develop these solutions in a
quick, transparent matter.

3.1 Linear Page Based Genetic Programming

Linear Page Based GPs (L-GP) consist of a sequence of integers that once de-
coded, form the basis of a program in which the output is taken from the best
performing register, as defined by the fitness function. In order to decode this
linear set of instructions, each integer is mapped to a valid instruction from the a
priori defined instruction set. The instruction set consists of operands and either
a source or destination register. The operands in our work are a set of register
arithmetic functions, while the source and destinations are a set of valid general
purpose registers. The decoding of a sequence then creates a program that con-
sists of simple register level transformation [7]. Upon completion of execution of
the program, the output is taken from the best performing register.

The sequence of integers are grouped in pages, each page consisting of the same
number of integers (therefore the same number of instructions). The crossover
operation performs a crossover on an entire page, preserving the total number
of pages in an individual. The mutation operator selects one instruction with
uniform probability and performs an Ex-OR operation between this and a bit se-
quence created with uniform probability. A second crossover operator performs a
swap of two instructions within the same individual (selected again with uniform
probability) [16]. The page size itself, which controls the number of instructions
per individual, is dynamically modified depending on the fitness level of the pop-
ulation. If the fitness level has not changed for a specified window, the page size
is increased. This pattern will continue until a maximum page size is reached, at
which point the page size is dropped back down to the initial starting page size.
This entire process is continued until the GP has reached either optimal fitness,
or some sort of previously set stopping criteria. Results show that the dynamic
page size algorithm is significantly more efficient then a fixed page size [16].

3.2 RSS-DSS Algorithm

The Random Subset Selection - Dynamic Subset Selection (RSS-DSS) algorithm
mentioned above is a technique implemented in order to reduce the
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computational overhead (therefore time to train the GP) involved with applying
GPs to large data sets. To do so, the RSS-DSS algorithm utilizes a hierarchi-
cal sampling of training exemplars, dividing the problem into two levels [7]. We
present here a brief overview of how the algorithm functions for completeness,
as we have implemented it in our GP, but it is not the focus of our work.

The first level of RSS-DSS divides the training set into blocks of equal size,
the second level chooses (stochastically) a block and places it in memory (RSS).
Level 2 performs the DSS step, as it dynamically selects a subset of the set
in memory (the tournament selection). The dynamic selection is based on two
metrics the GP maintains, the age of the exemplar and the apparent difficulty of
the exemplar [17]. The tournament individuals are then trained on the current
subset, genetic operators are applied, and then placed back in the subset. This
DSS is continued until a maximum number of DSS iterations or a stoping criteria
is met, then the algorithm returns to the RSS step, selecting another block to
place in memory and repeats DSS. This entire process continues until a maximum
number of RSS iterations or the stop criteria has been met.

The RSS-DSS algorithm removes the requirement to train on the entire data
set, instead only uses a small subset of the data set that represents the more dif-
ficult or least recently encountered exemplars. This allows the GP to train more
efficiently then standard techniques, with results being comparable or better
than more common GP training techniques [7].

4 Approach

Due to the above mentioned ability of L-GP when applied to Intrusion
Detection [7], we felt that this previous work would make for a strong foun-
dation for applying GP techniques to WiFi Intrusion Detection. To this end, we
have developed an appropriate fitness function and feature set for the detection
of the de-authentication attack on 802.11b networks. As mentioned, this attack
is both real and easily performed, and has damaging effects on network usability.

4.1 Data Set Creation

Our L-GP based IDS requires training and testing on labeled data sets. That is
to say, we require data files that have a fixed number of input fields creating
an exemplar, with an output field that indicates that it is either an attack
(binary 1) or normal (binary 0). For this realm, each exemplar represents a
management packet on a WiFi network. To the best of authors’ knowledge, no
known public database exists of wireless network traffic to use in training IDSs
based on learning algorithms. To this end, we first set upon creating such a data
set in order to train and test of our L-GP based IDS. Our approach to this task
was both practical (to be feasible within our research facilities ability) as well as
appropriate (large enough data set to be considered useful for training a learning
algorithm).

A data set collection of 12 different network traffic dumps were collected on a
real WiFi test network(performed using kismet [14] which dumps network traffic
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in a pcap format, a standard format for network traffic). These dump files were
grouped into two different sets, the large and small sets, as six data sets were
considerably larger then the other six. File statistics are shown in Table 1 (the
original file size is equal to the normal packet count).

These data sets were assumed to have no attacks existing within them (a fair
assumption given they were developed from load testing networks). From this, we
developed a series of scripts that allowed us to inject simulated deauthentication
attacks into the network stream. In order to create these attacks, we attacked
our own small test network consisting of one client, one access point, a hacker
laptop and a monitoring machine. The AP was the latest Apple Airport Base
Station, the client a Mac Mini. The client connected to the AP via an 802.11b
network on channel 6. The attack machine was an Intel based laptop running
a Prism 2 based WiFi card running the Auditor Security Collection operating
system. The monitoring machine was a Intel based Desktop computer running
Debian and using Kismet for monitoring the wireless network of the AP.

Using this network we implemented a DoS attack directed at both the client
and then the AP. The packet stream gathered via the monitoring machine in-
dicated that the attack required a stream of management frames of subtype 12
(indicating a de-authentication frame) with the source and BSSID ethernet ad-
dresses to be that of the target, and the destination address to be that of the
broadcast address (ff:ff:ff:ff:ff:ff). It is important to note that this attack can be
performed with slight variations of this frame, but this format seemed the most
effective. The frequency and duration of the transmission of the attack frames
depended upon the desired persistence of the attacker, we found that continu-
ous frame transmissions for a period of thirty frames (minimum) was required
to have the desired DoS result on the target. Due to these findings, our injected
de-authentication attacks vary in length between 30 and 100 attack frames at
random locations within the provided network streams. Our test “injected” data
sets then consisted of a varying number of actual attacks, with each attack vary-
ing in length. The statistics of these data sets are listed in Table 1.

Table 1. Injected Network Stream File Statistics

File Normal Packets Attack Packets Total Packets % Attack/Normal
1 155079 61959 217038 0.400
2 152759 126399 279158 0.827
3 156559 184159 340718 1.176
4 158399 241399 399798 1.524
5 153839 309079 462918 2.009
6 154679 364559 519238 2.357
7 44879 119 44998 0.003
8 44959 119 45078 0.003
9 44999 239 45238 0.005
10 45119 399 45518 0.009
11 45079 1759 46838 0.039
12 44999 3079 48078 0.068
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A second pair of data sets were also created in order to validate the above
approach. For these data sets, we implemented a small test network (the same
as described as above, with 5 more clients added to the network, all generating
web traffic) then attacked the network (using the techniques described above).
Thus the result being two data sets of varying length, with two different attack
placements and durations. These data sets are then used as a training testing
pair, as they represent live network traffic with an inline attack (file statistics in
Table 3).

4.2 Feature Selection

The data files listed in Table 1 are made up of management frame packets. A
management frame on a 802.11 network consists of several fields. For our L-GP
based IDS, we chose to train and test on the following features of the frame:

1. Frame Control - indicates the subtype of the frame
2. DA - destination address of the packet
3. SA - sender address of the packet
4. BSSID - ethernet address of the access point
5. Fragment Number - from the sequence control field
6. Sequence Number - from the sequence control field
7. Channel - the channel the transmission is occurring over

In total, this gives us seven inputs, and one output (attack label). This selec-
tion of features to select from each packet was chosen based on a priori knowledge
of the attack type. Our work here is to see if the GP can use this information to
then learn to detect the attack.

4.3 Fitness Function Selection

The fitness function (or cost function) we chose for our GP was based on our
goals of having a high detection rate (DR), as well as low false positive (FP) and
false negative (FN) rates, defined as follows;

DetectionRate = 1 − (
#FalseNegativeClassifications

TotalNumberofAttackConnections
) (1)

FalsePositiveRate = (
#FalsePositiveClassifications

TotalNumberofNormalConnections
) (2)

To this end, we define a switching fitness function that will punish the GP de-
pending on whether the GP has had a false positive or a false negative result.
Two different costs will be associated with the switch depending on the makeup
of the data set itself. If the individual has resulted in a false positive, the indi-
vidual is awarded a cost equal to the error over the number of normal packets
in the data set (Equation 3). Similarly, if the individual has resulted in a false
negative, it is awarded the cost of the error over the number of attack packets in
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the data set (Equation 4). A higher cost is deemed a poorer performance then
a lower cost.

Performanceofindividual+ =
Error

TotalNumberofNormalConnections
(3)

Performanceofindividual+ =
Error

TotalNumberofAttackConnections
(4)

The result of this switching cost function is that an individual will get awarded
costs that are proportional to how easy it is to achieve either a false positive or a
false negative. For example, if the individual results in a false negative, and there
are less normal packets then attack packets in the data set (say a ratio of 3 to 1),
then the cost associated with this will be larger then if it were a false positive.

Table 2. Disassociation Injected Network Stream File Statistics

File Normal Packets Attack Packets Total Packets % Attack/Normal
1 45040 0 45040 0
2 44960 120 45080 0.003
3 45120 160 45280 0.004
4 45120 440 45560 0.010
5 45200 880 46080 0.019
6 45120 1800 46920 0.038
7 45320 2800 48120 0.058
8 45400 5840 51240 0.114

5 Results

We ran the GP over all 12 data sets (Table 1), using each data set as a training
data set, as well as testing data sets. That is to say, we would run the GP on
data set 1, then test on data sets 2-12, etc. This insured that the GP was being
evaluated on an array of different data sets, with different ratios of attack to
normal exemplars, different placements and durations of attacks, as well as the
size of the data sets themselves. We then ran each one of the above experiments
10 times, with different random seeds used for the initial population creation.
The parameters used during the running of the GP are shown in Table 6, the
results are shown in Table 4.

As seen from the results, our L-GP based IDS performed incredibly well. Thus
for verification purposes, two more experiments were conducted. The first being

Table 3. Live Network Data Set File Statistics

File Normal Packets Attack Packets Total Packets % Attack/Normal
Training 5890 450 5440 0.083
Testing 6370 130 6240 0.021
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to create another 8 data sets (file statistics show in Table 2). This collection of
data sets were injected with a similar attack to the de-authentication attack:
the disassociation attack [10], which is different only in the type of frame that
is sent by the attacker. We tested the previously trained GPs (trained with the
de-authentication attack) on these newer data sets. The intent was to determine
if the GP had over specified its training; if so, it would miss the very similar
attack. The results, shown in Table 4, indicate that the GP had developed a
solution that was general enough to detect this new (admittedly similar) attack.

The second additional experiment used the data set pair created with live
network traffic and inline attacks (described in 4.1). These data sets represent
a real WiFi network that had been attacked using the DoS attack, with the
network traffic before, after and during the attack recorded and labeled for use
in training and testing the L-GP based IDS. The goal of this experiment is to
show that the response of the network to the attack (such as the rejoining of the
clients to the network after being de-authenticated) would not cause difficulty
to the IDS. The GP was run 40 times, using different initial seeds for the initial
population generation, which resulted in two best performing solutions shown in
Table 5. As shown, even on live network traffic, the L-GP based IDS performs
incredibly well. The best solution with respect to the detection rate, maintains

Table 4. Results

Performance: De-Authentication Attacks Disassociation Attacks
Run Time DR FP Rate Run Time DR FP Rate

1st Quartile 19.9983 100.00% 0.00 18.5455 100.00% 0.00
Median 23.5468 100.00% 0.00 26.145 100.00% 0.00

3rd Quartile 27.712 100.00% 0.00 33.9506 100.00% 0.00

Table 5. Live Network Resulting Solutions

Best Performer with respect to DR with respect to FP Rate
Time 44.098 40.838
Detection Rate 100.000% 86.154%
FP Rate 0.529% 0.000%

Table 6. Parameter Settings for Dynamic Page Based Linear GP

Parameter Setting Parameter Setting
Population size 125 Number of registers 8
Maximim number of pages 32 Function set {+,-,*,/}
Page size 8 instructions Terminal set {0, ..., 255}

⋃
{i0, ...,i63}

Maximum working page size 8 instructions RSS subset size 5000
Crossover probability 0.9 DSS subset size 50
Mutation probability 0.5 RSS iteration 1000
Swap probability 0.9 DSS iteration 100
Tournament size 4
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a 100% DR, while still providing a very low FP rate, as well the best solution
with respect to the false positive rate can achieve a 0% FP rate, with a high DR.

6 Discussion/Future Work

We have successfully shown that a L-GP based IDS can be applied to attacks
that are unique to the realm of WiFi networks. Our results show that the GP
can be trained on one of the most common attacks to 802.11 networks, with
an outcome of 100% detection rate with a 0.529% false positive rate. We have
also shown that the GP, even when trained on such a specific attack type, can
provide a solution that is generalized enough to detect similar attacks.

We hypothesize that the original collection data sets did not simulate the real
reaction of the network from the attack, thus providing the GP with a clean
separation between the attack packets and the network background traffic. By
then running our IDS on live network traffic during a DoS attack, and using this
as our training and testing data sets, we have shown that we can still achieve
such high DR and low FP rates. Our future work will explore larger live network
data sets including both DoS attacks and more complicated attacks such as Man
in the Middle Attacks.
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Abstract. A common method for improving a genetic programming
search on difficult problems is either multiplying the number of runs or
increasing the population size.

In this paper we propose a new search strategy which attempts to
obtain a higher probability of success with smaller amounts of compu-
tational resources. We call this model Divide & Conquer since our al-
gorithm initially partitions the search space in smaller regions that are
explored independently of each other. Then, our algorithm collects the
most competitive individuals found in each partition and exploits them in
order to get a solution. We benchmarked our proposal on three problem
domains widely used in the literature. Our results show a significant im-
provement of the likelihood of success while requiring less computational
resources than the standard algorithm.

1 Introduction

When one uses Genetic Programming to solve a problem, he has two expectan-
cies: on the one hand, maximize the probability to obtain a solution, and on the
other hand, minimize the amount of computational resources to get this solution.

Unfortunately performance on a given problem may be strongly dependent
on a broad range of parameters, including the choice of the functions and ter-
minals set, size and composition of the initial population, maximum number of
generations and so on.

To overcome the difficulties of such problems a traditional method was to use
a larger population and to increase the maximum number of generations [1][6].
Large populations were considered beneficial because they maintain diversity
and may avoid premature convergence. However, more recent works advocate
for different approaches, using either populations of moderate or variable size
(e.g. [5][9]), or using multiple independent short runs (e.g. [8][2]) in order to
outperform a long run.

Recent research [4] confirms that the composition of an initial population has
a crucial influence on the probability of success for a problem. It is suggested
that the initial population must contain a sufficient quantity of useful building
blocks and that these blocks must be part of the fittest individuals. Moreover it
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was shown in [3] that the building blocks used during the GP process are not
dispersed throughout in the initial population, but is instead concentrated in a
subset of individuals.

Thus the effectiveness of GP to solve a problem is conditioned by its ability
to create potential good individuals in the initial population and identify the
individuals which are most likely to provide building blocks useful to find the
solution.

In this paper we build on these existing results and propose a new model
attempting to meet these requirements. Our model works in two phases. During
the first phase we partition the search space in smaller regions that are explored
independently of each other. We do so by generating initial populations carefully
tailored to maximize the coverage of each region. Then, in the second phase, we
collect the most competitive individuals found in each region and explore the
resulting search space. In other words, we attempt to generate individuals which
maximize the coverage of the search space and then we attempt to exploit the
most promising individuals. Our strategy aims to obtain a solution with a better
probability of success for a lower computational cost.

The outline of the paper is as follows. In Section 2 we describe our strategy in
detail. Section 3 presents the experimental procedure used to study the behavior
of the new algorithm with various metrics. Section 4 discusses the results of our
experiments. Section 5 concludes and anticipates on further evolutions of our
strategy.

2 Divide & Conquer Strategy

Our proposal, that we call Divide & Conquer, is inspired by earlier models for
coarse-grained parallelization of the genetic programming process [10][11]. These
models build a net of subpopulations called “demes”. Each deme evolves inde-
pendently of one another during a sequence of consecutive generations. Then,
demes may exchange information by migrating individuals between each other
according to a predefined pattern. Our proposal uses the concept of demes but
works differently.

2.1 Model Description

First of all, we apply a reduction and differentiation function on the functions set
FS , as follows. Let n denote the cardinality of FS . We build all possible subsets
of FS composed of exactly p elements, where p is a parameter of the algorithm
such that p < n. We may apply the same procedure also on the terminals set TS ,
or on the union of both TS ∪FS . If the reduction and differentiation is applied on
FS then the elements of TS are added to the new subsets, if it is applied on TS

we add the elements of FS . We denote by fRD the reduction and differentiation
function and by RDi

SS (i ∈ [1, n]) the subsets generated.
Each deme operates on one of the subsets generated by fRD. It follows that

each deme operates on a subset of functions and terminals different from the
subset of any other deme. Subsets obtained from TS must contain at least one
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element and those obtained from FS must contain at least two elements or, two
elements and one element respectively from TS and FS . Otherwise, the use of
an evolutionary approach would be meaningless.

The number of demes must be the same as the number of the subsets generated
by fRD, that is numOfDemes = Cp

n. The algorithm analyzed in this paper use
p = n − 1. It follows that, in our case it will be numOfDemes = Cn−1

n , hence
numOfDemes = n.

At this point, the initial population of each deme is constructed based on the
subset associated with that deme. Each deme evolves independently of each other
deme, until either the problem is solved or a maximum number of generations
maxDemeGenNumber is reached.

If no solution is found, i.e., all demes reach the maximum number of gen-
erations, we merge all the demes and keep only the best individuals based
on a ranking selection procedure. This new population then evolves as usual,
i.e., either until the problem is solved or a maximum number of generation is
reached.

Full details about our algorithm are given in Figure 2.

2.2 Model’s Dynamics

An example of the algorithm’s dynamics is shown in Figure 1 where the final
population size is 500, the maximum number of generations is 95 and the maxi-
mum number of generations for a deme is 5. For this example we have chosen to
reduce only the functions set. The algorithm initiates by creating 4 demes which
evolve independently for 5 generations. Then, the individuals of the demes are
ranked according to their fitness. The best 500 individuals are used to build up
a new population. This population evolves until the problem is solved or until
the maximum number of generations is reached.

Fig. 1. Example of the Divide & Conquer strategy
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divideAndConquer(TS , FS , CS, populationSize, maxGenNumber, maxDemeGenNumber)

TS Terminals set
FS Functions set
CS the set chosen by the user where fRD is applied either TS, or FS, or TS∪FS

populationSize Population size
maxGenNumber Maximum number of generations
maxDemeGenNumber Maximum number of generations for each deme

1. n = |CS|
2. numOfDemes = Cn−1

n = n // Number of demes
3. Generate subsets RD1

SS , RD2
SS , . . . , RDn

SS by applying fRD on CS

4. if CS == FS then
Foreach i ∈ [1, n], RDi

SS = TS ∪ RDi
SS

5. else if CS == TS then
Foreach i ∈ [1, n], RDi

SS = FS ∪ RDi
SS

6. demePopulationSize = floor populationSize
|TS∪FS |−1

|TS∪FS | // Population size for each deme

7. j = 1 // Deme counter

8. while problem is not solved or j ≤ numOfDemes

(a) Randomly initialize a deme population Dj from elements of RDj
SS

(b) Dj = evolve(Dj , demePopulationSize, maxDemeGenNumber)
(c) Next deme: j = j + 1

9. Create a new population P composed of the best ranked individuals in numOfDemes
k=1 Dk

10. P = evolve(P, populationSize, maxGenNumber)
11. Get the best individual from P

evolve(population, populationSize, maxGenNumber) : finalPopulation

population Population to evolve
populationSize Population size
maxGenNumber Maximum number of generations
finalPopulation the population returned after evolution

1. i = 0 // Initial Generation
2. Pi = population // Population at a given generation i

3. while problem is not solved or i < maxGenNumber
(a) Evaluate population Pi

(b) Generate a new population Pi+1 by reproduction, crossover, mutation of individuals
i. Select genetic operation O(Or , Oc, Om)
ii. Select best individuals BS from current population (Pi)
iii. Generate offspring (O, BS , Pi+1)

(c) Next generation: i = i + 1

4. return Pi

Fig. 2. The Divide & Conquer algorithm

We used a little number of generations to evolve the demes since we do not
expect to find a solution in a deme but only to explore different regions of the
search space and then to make emerge potential good individuals. In a second
step, the final population is evolved on a longer period of time in order to exploit
the building blocks included in the best individuals discovered during the explo-
ration step. Note that we construct demes in such a way that the population
size of a deme is smaller than the size of the final population. The reason for
this choice is twofold. On the one hand, we believe we can reduce the population
size since the search space is substantially smaller. On the other hand, we increase



A Divide & Conquer Strategy for Improving Efficiency and Probability 17

the probability that the final population will include individuals from different
demes, thereby increasing its diversity.

3 Experimental Procedure

We benchmarked our proposal on a range of standard test problems used in
genetic programming research. We present them briefly here but a more detailed
description can be found in [6].

Multiplexer 6 bits. The goal is to determine a boolean function which decodes
a binary address and restores the value contained in the corresponding reg-
ister of data. The training set consists of the 64 possible combinations of
inputs-outputs. The fitness function evaluates the number of correct answers
provided by the program considered on the whole set of training.

Santa Fe ant. An artificial ant tries to find some pieces of food which are
arranged along a path on a two dimensional grid. The “Santa Fe Trail” is an
irregular trail composed of 89 food pellets. The fitness function counts the
number of pieces of food picked up by the ant.

Symbolic regression. The goal is to find a mathematical expression, in sym-
bolic form, that fits a given sample of data points. Our training set is com-
posed of 81 elements corresponding to all combinations of the integer values
taken in the interval [−4, 4] assigned to each combination of input’s variables.
The fitness function computes the sum of the errors on the training set i.e.
the sum of the distances between the desired values and those obtained with
the program considered.

We used a second degree polynomial function with two parameters:

2x2 − 3y2 + 5xy − 7x + 11y − 13

We indicate functions and terminals set for each problem in Table 1

Table 1. Terminals and functions set

Multiplexer 6 bits Santa Fe ant Symbolic
regression

Terminals set A0, A1, D0, D1, D2, D3 Left, Right, Move 1, x, y

Functions set And, Or, Not, If IfFoodAhead, Progn2, Progn3 +,−, /,×

For our experiments we used Sean Lukes Evolutionary Computation and
Genetic Programming Research System (ECJ13) which is freely available on
the web at http://cs.gmu.edu/ eclab/projects/ecj/. We developed a com-
panion package which implements our Divide & Conquer model without any
modification to the original API.

The first two problems are provided with the API, for the third we slightly
modified the code of the multivalued regression example in order to implement
our own function.
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For each problem, we executed the following algorithms.

Classical GP. For comparison purpose, we used the standard GP algorithm
with populations size 500, 1000, 1500 and 2000.

Divide & Conquer. For each problem we apply the Divide & Conquer strategy
by reducing either the terminals set, or the functions set, or the union of
both. The size of the final population, as resulting from merging the demes,
was set to 500. We refer to these as follows:
D&C (FS) when the reduction and differentiation function fRD is applied
only on FS

D&C (TS) when fRD is applied only on TS

D&C (FS ∪ TS) when fRD is applied on FS ∪ TS

Divide & Conquer naive. In order to evaluate the effectiveness of our reduction
and differentiation procedure, we repeated the very same tests as those of
the previous suite, but without applying fRD. For example, we repeated the
test D&C (FS) with the same number of demes but without applying fRD

on FS .

It can be seen that we executed 10 tests for each problem. Each test is the
result of 100 independent executions. Each execution starts with a different seed
for the random number generator. Moreover, we used the same seeds for each
test.

We allocate the same maximum number of fitness evaluations for each test.
That is, the generation at which that number of fitness evaluation is reached
(200000 in our experiments) is the last generation. The parameters common to
all tests are summarized in the Table 2.

Table 2. Parameter settings

Parameter Setting
Selection Tournament of size 7
Initialization method Ramped Half-and-Half
Initialization depths 2-6 levels
Maximum depth 17
Internal node bias 90% internals, 10% terminals
Crossover rate 90%
Reproduction rate 10%
Number of runs 100

Max number of generations for a deme 5

We focused on the following metrics:

Percentage of success, a run is considered successful if the algorithm finds an
optimal solution.

Number of fitness evaluations performed on successful runs.
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Time spent on successful runs. This index captures the fact that each evaluation
has its own cost, depending for instance on the number of nodes or the
complexity of each node in that evaluation. The previous index, in contrast,
treats all evaluations as having the same cost.

Obviously, the absolute value of the “time” performance index is not very
meaningful: while probability of success and number of evaluations describe
properties that are intrinsic to the genetic programming process, time is related
to the specific hardware and software platform used. However, as we shall see,
the normalized value of the “time” performance index does provide important
insights into the behavior of the algorithms.

4 Results

Figure 3 shows the percentage of success achieved by each test. We do not report
the percentages of success for the Multiplexer 6 bits because almost all tests reach
100% (only the test based on the standard algorithm with a population size of
500 give a value sligtly lower with 97% of success).

We note that our proposal exhibits the best probability of success, provided
the differentiation and reduction function is applied either on the function set
FS or on the union FS ∪ TS . In particular, for the symbolic regression problem,
the improvement with respect to the best result with the classical GP algorithm
is 27% and 22%, respectively. For the ant problem the improvement is 20% and
19%, respectively. It can be seen that the Santa Fe ant problem benefits by our
strategy whereas it is considered as a deceptive problem[7].

We also note that, with the classical GP algorithm and for a limited number of
evaluations, use of a larger population may improve the probability of success but
up to a certain upper bound. For example, in the ant problem, the performance

Fig. 3. Percentage of success (for the classical algorithm we indicate in parenthesis the
population size)
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Fig. 4. The upper row of charts presents the average and standard deviation number
of fitness evaluations and the lower row, the average and standard deviation of the
normalized time

with initial population 2000 is worse than with initial population 1500. In the
symbolic regression problem we have not reached the upper bound, however, the
improvement from 1500 to 2000 is quite small.

The next suite of experiments is meant to assess the efficiency of the meth-
ods (cf. Figure 4). So we counted for each test the average number of fitness
evaluations for all runs which achieve a success. We also measured the average
time consumed Te for the same runs, and normalized it versus the slowest one

Te
Teslow

. For example, the standard algorithm applied to the ant problem with a
population size of 500 obtains a success after 60000 fitness evaluations or after
22% of the computing time used by the slowest test (D&C naive(FS)).

Once again, the Divide & Conquer strategy using fRD applied on FS or on
TS ∪FS achieves the best results for the ant and symbolic regression problem and
that, independently of the metric used. For the multiplexer problem, there is nei-
ther improvement, nor a significant computational overload for our model. As our
approach uses several demes, we did not expect to give any benefits to problems
which can be solved in a small number of generations with small populations.

As an aside, the results in Figure 4 confirm that measuring the (normalized)
time required for each test does provide important insights into the cost of
each algorithm. For example, in the ant problem, the D&C naive(FS) and D&C
naive(TS) are by far the most expensive tests, but this fact would be hidden if
one assumed that all evaluations have the same cost.
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Fig. 5. Cumulative probability of success versus normalized time for the ant and
symbolic regression problem

Finally, we evaluate the cumulative probability of success as a function of the
computational cost (measured by the normalized time). For example, the stan-
dard algorithm applied to the ant problem gives a likelihood of success of 15% for
a computing time ranging between 48 and 50% of the slowest test. For the sake
of readability, we plotted only the tests that give the best probability of success
for each model (Classical GP, Divide & Conquer, Divide & Conquer naive).

It appears clearly that D&C (FS) maximizes the probability of success for a
given computational cost. It is interesting to note that, in the symbolic regression
problem, D&C (FS) reaches its upper bound very quickly, that is, not only
this method provides the best probability of success, it also reaches its best
performance much faster (more than 10 times) than the two other best methods.

One can also note that for all the methods, increasing the number of gener-
ations and thus the computing time does not bring a significant improvement.
Thus, for the problems considered our experiments confirm the fact that long
runs are not useful.
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5 Conclusions and Future Work

In this paper we introduced a new search strategy for the genetic programming
in order to maximize the probability of success with a smaller amount of compu-
tational resources. The Divide & Conquer strategy offers a new way to manage
the evolutionary process through two keys ideas.

Firstly, we use the concept of demes built on subsets of functions and terminals
in order to maximize the coverage of the search space. In this way, each deme
works on a region of the original search space.

Secondly, we decompose the evolutionary process in two distinct levels of
research. With this approach, the higher level combines the best partial solutions
found by the lower level. In doing so, our model has clearly demonstrated its
efficiency on the proposed problems, and the results show that the probability
of success is improved for a reduced computational cost.

Future works for the Divide & Conquer strategy will investigate the efficiency
of the model on others problems in order to determine automatically whether the
reduction and differentiation function should be applied either on the functions
set, or on the terminals set, or on both, according to the characteristics of the
problem.

We work also on an extended version of the algorithm described in Section 2
which might be applied recursively within each deme. In this case, the reduction
and differentiation function will operate on the subset RDSS associated with
each deme.
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Abstract. In the context of Solomonoff’s Inductive Inference theory,
Induction operator plays a key role in modeling and correctly predict-
ing the behavior of a given phenomenon. Unfortunately, this operator
is not algorithmically computable. The present paper deals with a Ge-
netic Programming approach to Inductive Inference, with reference to
Solomonoff’s algorithmic probability theory, that consists in evolving a
population of mathematical expressions looking for the ‘optimal’ one
that generates a collection of data and has a maximal a priori probabil-
ity. Validation is performed on Coulomb’s Law, on the Henon series and
on the Arosa Ozone time series. The results show that the method is
effective in obtaining the analytical expression of the first two problems,
and in achieving a very good approximation and forecasting of the third.

1 Introduction

Given a symbolic string coding for a sequence of n values measured in an ongoing
experiment, which will the (n + 1)–th string element be? Among all logical
processes, Inductive Inference (II) is the best suited to face this question, because
it can carry out forecast starting from some observed data. As an example, let us
consider an alphabet B; let Σ = B∞ be the fundamental space composed by all
the possible sequences of symbols from B. With these premises, let us assume an a
priori probability distribution P over Σ and let us denote by P(x) the probability
that a sequence begins with the string x. Thus, given x, an II system must be
able to extrapolate the sequence beginning with x by forecasting, one at a time,
the symbols which follow in the composition of the string itself (incremental
mode). In algorithmic words, this means to find the effective process which has
generated the string x and which can continue it. More formally, if P(xa) is the
probability associated to the hypothesis that the sequence x continues with a

P. Collet et al. (Eds.): EuroGP 2006, LNCS 3905, pp. 24–35, 2006.
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given symbol a ∈ B, by noting that P(x|a) = 1, ∀a ∈ B, we can obtain from
Bayes’ rule that: P(a|x) = P(xa)/P(x), which is the probability that, given
the initial string x, the next string symbol is a. All is needed to evaluate this
probability is just to find the a priori probability distribution P(·). The problem
is that, for the most interesting cases, P(·) is either unknown or unknowable. As
a consequence, in order to be the II an effective tool for scientific investigations,
it is necessary to have for any considered case an estimate for P associated to it.

In early Sixties Solomonoff proposed a formal theory for II. Basic ingredi-
ents of the theory are the concepts of algorithmic probability and Kolmogorov
Complexity (KC) [1]. By making use of a variant of the notion of KC called
“prefix” [2], it is possible to define an a priori universal probability distribution
such that the a priori universal probability for a string x is the sum over the
probabilities of all the self–delimiting 1 programs which, whenever it is given as
input to a universal Turing machine, compute x. It can be demonstrated that
for the infinite and enumerable set of programs for x, the sum which defines
the universal a priori probability behaves as |B|−K(x), where |B| is the car-
dinality of the chosen alphabet B and K(x) is the “prefix” complexity of the
string x.

The universal a priori probability distribution shows important features [3].
Firstly, due to the use of KC which is a measure of the quantity of information
for a string independent of the way used to describe it, it is an objective and
absolute estimate for any computable probability distribution. Moreover, it can
be shown that, by using the universal distribution as an estimate of the exact
a priori probability, the square error made in forecasting the occurrence of the
(n + 1)–th symbol converges to zero faster than 1/n, where n is the number
of previously forecasted elements. Hence, any a priori probability distribution
can be approximated with extreme accuracy by directly using the universal dis-
tribution. Finally, the distribution introduced by Solomonoff allows to mathe-
matically formulate the epistemic principle known as Occam’s razor. In other
words, a priori, ‘simple’ strings, i.e. strings with low algorithmic complexity,
are more probable. Unfortunately it has been demonstrated that the universal a
priori probability distribution is not computable. Nonetheless it exists a partial
recursive function that, to the limit, approximates it from below. The problem
is that an algorithmic procedure reaching the mentioned approximation requires
infinite space and time resources, thus resulting unfeasible. Then, one can only
provide himself with a procedure which in general does not terminate, yet com-
putes intermediate results which represent more and more accurate estimates
for the universal a priori probability.

Genetic Programming (GP) seems to be the best suited technique for the
above goal. In fact, it generates a population of individuals, each representing
a possible solution to the examined problem, and makes it evolve generation
after generation so to obtain that these individuals get closer and closer to the
solution looked for. Particularly, with the aim to help the evolution to explore

1 A program of a string x is said self-delimiting if it is not the prefix of any other
program describing x.



26 I. De Falco et al.

the most interesting parts of the solution space, it is needed to define a fitness
function which can evaluate the effectiveness for the proposed solutions.

Our goal is to show that to model a forecast for the next results of an exper-
iment, i.e. to solve induction problems by II method, it is possible to introduce,
by premising some hypotheses to the model, a fitness function directly derived
from the expression of the probability distribution of any possible result for the
future experiments, as a function of those recorded in the previous n.

The confirmation of the made hypotheses is given by the set of results obtained
from both symbolic regression trials and modeling and forecasting experiments
conducted in the experimental validation phase.

In Section 2 we provide the roots of Solomonoff’s theory on induction. The
theoretical hypotheses and applicative solutions adopted are outlined in Section
3. The approach by GP is described in Section 4 while the experiments and the
related results are shown in Section 5. Finally, we report the conclusions from
our work and some possible ways for further improvements.

2 Solomonoff’s View on Induction

During his research activity, Solomonoff has often considered the opportunity
to develop a general method for probabilistic forecasting [3, 4]. One of the faced
problems is the extrapolation on an unordered set of ordered couples of elements
Qi and Ai, which can be strings and/or numbers. In other words, given a new
Qj, this means to find a probability distribution for all the possible Ajs. The i–th
couple, hereinafter denoted by (Qi, Ai), can be of very different kinds and cover
a great variety of induction problems, i.e., grammar discovery identification and
categorization problems, curve fitting and time series prediction.

A generic induction problem on an unordered set can be solved by defining
an operator, which is able to satisfy the following request: let [Qi, Ai] be an
unordered set of n couples (Qi, Ai), i = 1 . . . n. Given a new element Qn+1,
which is the function F such that F (Qi) = Ai, for i = 1, . . . , n+1, and with the
highest a priori probability?

Once assigned a new element Qn+1, let us start by determining the corre-
sponding distribution probability for any possible An+1. From bayesian consid-
erations, and by supposing that each couple (Qi, Ai) is independent of the others,
the distribution probability of An+1 can be written as [3]:

P(An+1) =
∑

j

aj
0 Oj(A1 . . . An+1|Q1 . . . Qn+1) =

∑
j

aj
0

n+1∏
i=1

Oj(Ai|Qi) (1)

where Oj(·|·) is the conditional probability distribution with respect to the func-
tion F j such that F j(Qi) = Ai, and where aj

0 is the a priori probability asso-
ciated to F j . aj

0 approximately equals 2− l(F j), where l(F j) is the length in bits
of the shortest description for F j . The (1) can be written as follows:

P(An+1) =
∑

j

aj
n Oj(An+1|Qn+1), with aj

n = aj
0

n∏
i=1

Oj(Ai|Qi). (2)
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Solomonoff called the (2) Induction Operator (IO) [3]. From it, it can be
deduced that the probability distribution P(An+1) is the sum of all the con-
ditional probability distributions Oj(An+1|Qn+1)s associated to the functions
F js, weighted by the product of the respective a priori probabilities and of the
probabilities of the previously observed data based on F j. It is of course impos-
sible to compute the infinite sum in (2) by using finite resources, yet it can be
approximated by using a finite number of terms, i.e. those having a high value of
aj

n. The ideal case would be to include the terms with maximal weights among
the aj

ns, but singling them out is tied to the problem of searching the highest a
priori probabilities aj

0s, i.e. to the search of programs u whose length l(u) is as
small as possible. The problem is that no effective procedure exists able to carry
out this search, since some among the u programs might not terminate, but this
cannot be known a priori. Thus, the application of the IO consists in trying to
find, in a preset time, a set of functions F js such that the sum:∑

j

aj
n (3)

be as high as possible. It is evident that for deterministic induction it is sufficient
to find, in a finite time, the one among all the aj

ns which dominates (3). In the
following, we shall consider only deterministic induction problems.

It should be noted that the approach followed is that of the bayesian infer-
ence method, so the better is the a priori estimate the more are consistent the
forecasts. In this way, by using the (2), we are able to express the probability
of an arbitrary An+1 directly as a function of the set [Qi, Ai]. We just need to
decide which expressions to use for the Oj(·|·) and for the aj

0. We will face these
two issues separately, respectively in next section and in Section 4.

3 Theoretical Hypotheses and Applicative Solutions

Let us start by estimating the conditional probability distribution Oj(·|·) associ-
ated to the functions F js. To this aim, we introduce in our model the hypothesis
that any element Ai is given by a deterministic function F j of Qi plus an error,
denoted by εj , which directly depends on the function F j :

Ai = F j(Qi) + εj (4)

Let us now assume that the εj has a normal distribution with zero mean value
and with standard deviation σ independent of both Qi and the index j:

p(εj) = (2πσ2)−1/2e−
ε2

j

2σ2 (5)

Substitution of the (4) in the (5) yields that the distribution probability, with
respect to F j , of the Ais conditioned by the Qi, can be written as

Oj(Ai|Qi) = (2πσ2)−1/2e−
[F j(Qi)−Ai]

2

2σ2 (6)
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Therefore, under the hypotheses (4) and (5), the Oj(·|·)s are distributions of
gaussian probabilities with standard deviation σ. By substituting the (6) in the
second of (2), it results:

aj
n = aj

0 (2πσ2)−1/2e

−
n∑

i=1

[F j(Qi) − Ai]2

2σ2
(7)

This new expression for the aj
n suggests a different way from the one proposed

by Solomonoff [3]. Rather than maximizing the (3), we minimize, with respect
to the functions F js, the negative of the natural logarithm of its terms:

− lnaj
n =

1
2σ2

n∑
i=1

[
F j(Qi) − Ai

]2
− ln aj

0 + lnσ +
ln(2π)

2
≈ (8)

≈ 1
2σ2

n∑
i=1

[
F j(Qi) − Ai

]2
− ln aj

0 . (9)

In such a way, we wiil not only have linear functions of the aj
n, which depend on

F j and on its a priori probabilities aj
0, but we will also be able to write a less

expensive procedure, in terms of exploited resources, which computes them.
It is worth noting an important feature of our approach. Actually, the ordering

of the set on which the induction is effected is a property involved neither in the
construction of the theoretical model adopted nor in the formulation of the (9).
It is therefore sensible to suppose that the solutions found, in principle achieved
in order to solve cases of II on unordered sets, can be expanded to inductive
problems defined on ordered [Qi, Ai] sets. Such hypothesis, of course, must be
verified in the experimental validation phase.

Finally, some computational considerations. We recall that the sum in the
(2) should be computed on all the recursive functions, but, given that the set
of those functions is not effectively enumerable, we will limit ourselves to take
into account only the partial recursive functions. The best one can do is to use
a procedure not terminating in general, yet providing as intermediate results a
better and better approximations of the aj

n, thus finding a term whose weight
has the highest possible value, in an arbitrary amount of time.

4 Grammar–Based GP

The use of the Evolutionary Algorithms (EAs) seems to be a sensible approach to
solve this problem [3]. In particular, among EAs, GP [5, 6] is definitely preferable
when functional expressions are searched for, e.g., the F j , which can interpolate
all (Qi, Ai) couples while maximizing their a priori probability. It should be
noted, however that, differently from Solomonoff’s incremental approach, in ours
the data are presented to the II system grouped in sets (batch mode).

Particular attention must be paid to the genetic generation and preservation
of valid programs in order to overcome the possible lack of closure property



A Genetic Programming Approach to Solomonoff’s Probabilistic Induction 29

GP is subject to. Whigham, as an example, created a GP based on Context–
Free Grammars (CFGs) [7]. He used derivation trees of CFGs as genotypes, the
phenotypes being the programs generated by those trees. The introduction of a
CFG in the GP scheme yields noticeable advantages: among them we can recall
the possibility of defining a structured language in which programs are strings,
and an easy definition and modification of the genetic operators so that they can
preserve program coherence and thus closure property. Whigham also showed
that CFGs are an efficient approach to introduce a bias into the evolutionary
process. In fact, by assigning weights to specific productions so to increase their
probability of selection, they allow to introduce a bias in the search process,
implicitly exploiting the a priori information about the specific problem tackled.

Following [7], our GP is based on an expression generator that provides the
starting population with a set of programs differing in terms of size, shape and
functionality. The expression generator is implemented by means of a CFG which
ensures the syntactic correctness of the programs. Differently from Whigham, the
choice of the production rules taking place in the derivation tree of any individual
is effected by using a uniform distribution so to avoid favoring a rule. At start, the
automaton calls upon the starting rule and then continues by applying, one at a
time, other ones allowed in that situation. The automaton halts if no applicable
rules exist in a given situation or if the program size exceeds a set limit. In this
latter case the individual is discarded and a new one is generated. The result is
a tree in which the nodes are nonterminal symbols, the branches are derivation
steps and the fruit is the represented program.

The encoding for the programs, i.e. the phenotypes, as derivation trees for the
adopted CFG, i.e. the genotypes, allows to implement the changes to the geno-
typic structures by the genetic operators used as simple operations on trees. It
is also easy to respect closure condition: it is sufficient to act on internal tree
nodes and substitute a production rule with another having in its left part the
same nonterminal symbol. The operators implemented are crossover and muta-
tion. Crossover works by randomly choosing in a first individual a nonterminal
node and then selecting in a second individual a node representing the same
symbol. Finally this operator swaps the respective subtrees thus obtaining two
new individuals. Crossover has no effect if it is not possible to find in the second
parent a node corresponding to the nonterminal symbol selected in the first par-
ent. Mutation, instead, randomly acts on a nonterminal node of an individual
by removing the related subtree and by substituting it with a new one having as
its root the selected node. Two variants have been introduced for the mutation:
macro–mutation works on terminal and nonterminal symbols at the same time,
while micro–mutation acts only on a terminal symbol at a time.

4.1 Evaluation

The evaluation of an individual takes place in two steps: in the first the fruit
of its derivation tree, i.e. the program, is extracted and executed on a set
of sample data, thus attaining a sequence of values as output; in the second
phase the obtained output is used to compute the fitness value to assign to the
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Table 1. The grammar used

Rules
S → f(x) = E
E → f(x − N) | (EOE) |F (E) |R |x
O → + | − | ∗ | /
F → sqr | cube | sqrt | cubert | log | exp | sin | cos
N → t ∈ S ⊆ IN
R → c ∈ IR ⊆ IR

individual. The evaluated expressions are strings of the language defined by the
chosen grammar. The evaluator implemented can interpret any expression be-
longing to the language described by the grammar in Table 1. The wish has
arisen to verify the correctness and the effectiveness of the theoretical results
achieved for induction problems defined on ordered and on unordered sets. This
has conditioned the implementation of the evaluation process. For the study of
inductive problems on unordered sets, the evaluator works on any program with
the set of the questions of the couples (Qi, Ai) – the empirical data. The data are
randomly divided into three sets, i.e., training (T ), validation (V) and prediction
(P). The program is actually evaluated on T and the values obtained in output
are then compared to the answers Ai of the data, to compute the fitness. At
the end of the inferential process, the best program is selected according to the
values achieved on V and on which the inductive capabilities of the solutions are
estimated. Finally, the “goodness” of the best induced solution is verified on P .
If, instead, an inductive problem defined on an ordered set [Qi, Ai] is examined,
the ordering in the set [Qi, Ai] implies that the set of Qis is an interval. In this
case, T and V are mixed, while P is consecutive to them. Moreover, a further
interval, i.e., seed (S), has to be introduced. Such a set consists of the first values
of the data, which are provided as seed to the program to be executed. Length
of S can optionally be computed dynamically so that its length coincides with
the maximal number of preceding values required by the program.

4.2 The Fitness Function

In section 2 it has been shown that an induction problem on a generic set [Qi, Ai]
can be solved by finding a function F j with respect to which (9) is as low as
possible. Consequently to Solomonoff’s theory and to the hypotheses made, we
have adopt the following fitness function:

F (p) = ω ·

⎛
⎝ 1

n

1
σ2

∑
Qi∈ Q

|p (Qi) − Ai|2
⎞
⎠ − ln(a0(p)) (10)

where p is the expression evaluated, σ is the standard deviation of the empirical
data, Q is the set of the questions Qi from which II is made and n is their number,
p (Qi) is the value of the program for the i–th question, Ai is the answer related
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to Qi, ω is the weight associated to the error term. Finally a0(p) is the a priori
probability of the program p.

The (10) is a functional expression of two terms, exactly matching those
composing the (9). In fact, the first term is the product of a Mean Square Error
(MSE) by a weight ω ∈ IR+, and evaluates the error made by the program p
in the approximation of the problem under examination. The presence of the
weight is justified because, due to the hypotheses (4) and (5) and due to the
(6), the standard deviation for the noise ε is set while that of MSE depends on
the particular solution considered and, in general, on the biases and parameters
driving the evolutionary search. The second term, instead, depends on the a
priori probability of the program p examined. To evaluate it, starting from the
CFG, an algorithm computes the a priori probability a0(p) of the derivation
tree which generates the expression p. It must be remarked that, although the
(10) may resemble a particular form of parsimony pressure heuristically built, it
derives expressly and as a whole from the theoretical results achieved above.

As mentioned before, V allows us to select the overall best expression discov-
ered during the entire inference process. In fact, at each generation for all the
individuals in the population the (10) is computed on the set V . Hence, the result
of a run is the individual with the best such value achieved in all the generations
making up the run.

Computation of the a priori probability. The computation of the a0s is
carried out by means of the “Laplace’s rule” for successive and independent
events. Once specified the grammar, the probability αip that a given production
is present in the i–th node of the derivation tree of the program p is k/m, where
k is the number of times in which the production has previously occurred in the
definition of the tree and m is the total number of all the productions which are
legal there, incremented by the number of times in which they have previously
occurred in the definition of the tree. The product

a0(p) =
q∏

ip=1

αip , (11)

yields the a priori probability of the program p, i.e. of the fruit of the tree with q
productions, related to the grammar chosen [3]. This procedure is in accordance
with the results obtained by the theory of algorithmic probability, in the sense
that, once set the reference grammar, it attributes higher probabilities to func-
tions which have a lower descriptive complexity with reference to the grammar.
So, between two different functions which represent two possible solutions to a
given problem, the GP will choose the “simplest” one, thus causing an effective
application of “Occam’s razor”.

5 Experimental Results

The system has been tested on three different problems, namely Coulomb’s law
as an example of II on unordered sets, the Henon series and the Ozone time
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series in Arosa (Switzerland), as examples of II on ordered sets. Any program
execution is determined by a set of parameters, among which those related to
the evolutionary process and, for the series, those specifying the widths of the
intervals they are divided into. Another important parameter is the weight ω: it
should be chosen so to favor evolution of simpler individuals, while also allowing
creation of programs complex enough to adhere to the original function.

For any problem 10 runs with different random seeds have been carried out
with the same parameters. We have used a population size of 200, a tournament
selection mechanism with size of 5, a crossover operator taking place with a 30%
probability and a mutation operator (with 100% probability) which distinguishes
between macro– and micro–mutations, applying them with probabilities equal
to 30% and 70% respectively. The maximum number of generations allowed for
all the runs is set to 1000. After a preliminary tuning, ω has been set to 103.
For any problems a maximum tree depth of 15 has been considered. Finally, we
have set IR = [0, 10] for the first two problems and IR = [−1, 1] for the third
one.

Coulomb’s Law. As an example of a regression problem we have faced
Coulomb’s Law. Its expression is:

F 21 =
1

4πε0

q1q2

r2 r̂21 , (12)

where r is the module of the position vector r21 of q2 with respect to q1 and r̂21
is its versor, q1 and q2 are two point charges and ε0 is the dielectric constant of
vacuum. We have computed |F | between an electron and a proton and added a
normal error with a standard deviation of 1.0, thus obtaining 60 pairs (ri, Fi)
with r and F in nanometers and in 10−8N respectively.

We have set sizes for T , V and P to 40, 10 and 10 respectively. Since the
problem concerns an unordered set, the production rule E → f(x − N) has
been deactivated. In all the runs the (10), with a priori probability of 7.44E-6,
has been found. In the best case, it has been achieved in 32 generations, and
on average in 142.9. As in the most time–consuming run (Fig. 1 (right)), the
evolution consists of two distinct phases. The former is characterized by search
for an expression which better and better approximates (12). In this phase,
larger and larger expressions are found which provide lower and lower errors
on T . This takes place until about generation 120. The latter phase, instead,
begins when a solution equivalent to (12) emerges, and consists in achieving
other solutions with higher a priori probabilities, thus shorter. At the end of
this phase, at about generation 360, the optimal solution, i.e., (12), is reached.
Even though this “simplification” is an effect of the evolution process, which
tends to favor simpler solutions, it has a behavior very similar to that which
could be obtained by a human one. In fact, in all the runs GP has been able
to discover intermediate solutions equivalent to (12). Once such solutions have
emerged, then GP has evolved them towards the optimal one.
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Fig. 1. Most time–consuming run for the Coulomb

Fig. 2. Most time–consuming run for the Henon series

Henon series. It is a 2–D iterated map with chaotic solutions proposed by M.
Henon (1976) [8] as a simplified model of the Poincarè map for the Lorenz model:

h(t) = 1 + b · h(t − 2) − a · h2(t − 1) , with h(0) = 0.1 and h(1) = 0 (13)

where a and b are positive bifurcation parameters, with b a measure of the rate
of area contraction (dissipation). Henon series is the most general 2–D quadratic
map and, for b = 0, it reduces to the quadratic map, which is linked to the
Logistic series. Bounded solutions exist for this series over a range of a and
b values, and some yield chaotic solutions. Evidence of chaotic behavior can be
found for a = 1.4 and b = 0.3 and such values have been used for the experiments.
Widths for S, T , V and P have been set to 10, 20, 10 and 10 respectively, while
the CFG production rules with the symbol F have been deactivated.

Notwithstanding the Henon series strongly depends on the boundary condi-
tions, in all the runs effected the canonical solution (13) has been obtained, apart
from a possible swap between the terms. In the best case, the solution has been
achieved in 153 generations, and on average in 289. The evolution evidences two
phases as described for Coulomb’s Law (see Fig.2 (right)).

Ozone time series. The last problem we have faced is the monthly time series of
total ozone amounts at Arosa (Switzerland) from the beginning of the record in
1926 through 1972 [9]. The ozone measurements at Arosa show a strong seasonal
cycle, with a range of about 100 Dobson Units.
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Table 2. Results achieved on the Arosa Ozone time series

Best Average St.Dev.
Generation 876 651.2 281.03
A priori probability 2.06E-25 2.08E-26 6.49E-26
M.S.E. on T 0.2345 0.21609 0.0158
M.S.E. on V 0.1956 0.2325 0.0315
M.S.E. on P 0.2011 0.2525 0.0460

Fig. 3. Most time–consuming run for the Ozone series

The length for S has been set equal to 50, that for T +V to 400, 30% of which
to be used as V , and that for P to 30.

With respect to the previous series, some complications take place here. The
experimental results evidence that none of the runs achieves an error equal to
zero on T . However, in each run expressions with a good approximation of the
series have been obtained. The program with the overall best expression obtained
among all the 10 runs is the following:

f(t) = f(t − 24) +
((cos(f(t − 6) + ef(t−24)))2 − 0.41)3

ef(t−27) (14)

Table 2 reports the results, while Fig. 3 shows the behavior on T and V (top left)
and P (top right). A simple analysis of the solution evidences that, although the
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task difficulty, GP has been able to discover the underlying seasonal cycle. As
regards the evolutionary behavior, it is evident from Fig. 3 (bottom) that the
system dynamics shows that the scheme composed of two phases evidenced in
the previous cases is repeated from generation 1 to 256, from 257 to 399 and,
finally, from 400 to the end. We suppose that the more complex the problem is,
the more frequent the repetition of such a scheme is.

6 Conclusions

The problem of Inductive Inference has been faced by taking into account
Solomonoff’s probabilistic induction theory. This implies to search for solutions
which better approximate data while showing higher a priori probabilities. We
have made use of a GP scheme based on Context Free Grammars.

Our system has found the exact expression of Coulomb’s Law and the Henon
series, while pursuing appealing computational strategies. As regards the Arosa
Ozone time series, GP has been able to discover an expression that, making use
of the seasonal period, provides a good approximation of the data. Moreover,
the results evidence that our approach is effective also on ordered sets, thus
confirming the hypotheses made in Section 3.

Further improvements could consist in implementing an II system based on
Solomonoff’s incremental mode and in using more accurate methods for the
computation of the a priori probabilities assigned to F js, e.g., the Monte Carlo
method. In such a way, the search abilities of the system should be improved. In
fact, from bayesian considerations it results that the more precise is the evalua-
tion of the a priori probabilities, the more efficient is the search process.
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Abstract. Standard GP crossover is widely accepted as being a largely
destructive operator, creating many poor offspring in the search for bet-
ter ones. One of the major reasons for its destructiveness is its disrespect
for the context of swapped subtrees in their respective parent trees when
creating offspring. At times, this hampers GP’s performance consider-
ably, and results in populations with low average fitness values.

Many attempts have been made to make it a more constructive
crossover, mostly by preserving the context of the selected subtree in
the offspring. Although successful at preserving context, none of these
methods provide the opportunity to discover new and better contexts for
exchanged subtrees.

We introduce a context-aware crossover operator which operates by
identifying all possible contexts for a subtree, and evaluating each of
them. The context that produces the highest fitness is used to create a
child which is then passed into the next generation.

We have tested its performance on many benchmark problems. It has
shown better results than the standard GP crossover operator, using
either the same number or fewer individual evaluations. Furthermore,
the average fitness of populations using this scheme improves consider-
ably, and programs produced in this way are much smaller than those
produced using standard crossover.

1 Introduction

Crossover is considered to be the major driving force behind evolution in GP.
A simple one point crossover operator generates an individual by selecting a
subtree randomly from a parent tree and placing it randomly in some other
selected parent tree. The randomness of this operator makes it mostly destructive
(generates children inferior to their parents) [1]. To overcome this problem, many
context aware crossover operators are introduced, that attempt to ensure that
exchanged subtrees are used in at least a similar way by the offspring.

Most of the context aware crossover operators defined for GP work by preserv-
ing the context of a selected subtree in the produced child, so that it will be used
in a similar way. We argue that these approaches are restrictive in nature as they
only focus on preserving the context rather than finding a new and better one
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in the child. Brood recombination [9] has solved this problem to some extent by
generating multiple children. Unfortunately, this does not guarantee the use of
the selected subtrees in the best possible contexts in the produced children. The
probability of finding the best context is further reduced by selecting different
subtrees for each crossover.

We introduce a context-aware crossover which tries to find the best context
of the selected subtree during crossover. Because it uses the increase in fitness to
determine this, it has the ability to find a totally different and better context, and
we show that the computational cost of this method can be substantially lower
than standard GP when used in conjunction with standard subtree crossover.
One positive side effect of the crossover operator is the elimination of the dead
code (nodes not contributing towards individual’s fitness) which results in a
dramatic reduction in bloat.

In the next section we will discuss different context aware crossover approaches
known to GP community and their shortfalls. This is followed by a discussion
on the importance of the context in GP and introduction to the context-aware
crossover. Section 4 discusses our experimental setup and the brief description
of each, while section 5 discusses the findings of the experiments. Followed by
conclusions and our future plans.

2 Alternative Crossover Operators in GP

A lot of research has been conducted to make crossover more constructive and
many new operators are put forward by researchers. Some of them are discussed
below.

D’haeseleer [2] described a crossover operator which preserves the context in
which subtrees appeared in the parent trees. He proposed a node coordinates
system for rooted trees.

The system uniquely identifies every node of the tree by specifying the path
to be followed from the root to that node. A node’s position therefore can be
represented by a n coordinates tuple T = {b1, b2, b3, ..., bn}, where n is the depth
of the node in the subtree and bi indicates which branch of the tree to choose at
depth i (counting left to right).

Using this coordinate system two new crossover operators were introduced,
namely strong context preserving crossover (SCPC) and weak context preserving
crossover (WCPC). SCPS only allows the crossover between the subtrees having
identical coordinates in their parents. This operator is very restrictive in its
implementation as the depth of a subtree cannot change between the parent and
the newly generated child. To overcome this issue, the restrictions imposed were
relaxed and WCPC was proposed. In this, two subtrees, T 1 and T 2, are selected
as in SCPS, and then T 1 and any subtree T 2′ ⊆ T 2 (T 2 inclusive) is a valid
choice of subtrees for crossover. This allows the subtrees to change their depths.

Hengraprohm and Chongstitvatna [3] understood that, in standard GP
crossover, a good solution can be destroyed by an inappropriate choice of
crossover points. They introduced selective crossover for GP which identifies
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a good subtree by measuring its impact on the fitness of the container-tree (the
individual) by removing it and replacing it with a randomly selected terminal
from the terminal set. This way they were able to preserve the best subtrees in
an individual.

Ito et. al [4] proposed that the subtree selection for crossover should be re-
stricted to shallower nodes of the parent trees. This was to avoid the disruption
of building blocks. Additionally, they put a restriction that only children better
than their parents are allowed into the next generation.

Tackett [9], inspired by the fact that animal species produce far more children
than are expected to live, designed a brood recombination operator. It functions
by first selecting two parents from the population. Then N random crossovers
are performed between the selected parents to generate 2 ∗ N children. Then all
the generated children are evaluated and sorted. Finally, the best two children
are selected and considered as the children of the selected parents. Rest of the
children are discarded.

Poli and Langdon [8] in their uniform crossover, aligned the two parents
before crossover so that their root nodes are overlapped. Then they swapped the
corresponding nodes of parent trees.

Selective crossover using gene dominance [11] integrates the idea of gene dom-
inance [10] and uniform crossover evolving into a new crossover technique de-
signed with the feature of adaptability to the problem being optimized. This
operator works by first detecting subtrees which have a good impact during
crossover on the candidate solution, and then uses the difference between the
fitness of the parent and that of the child to discover beneficial alleles. Finally,
it preserves alleles by keeping the more dominant subtrees with individuals with
higher fitness.

Most of these techniques work by preserving the context of the subtree in the
children. However, this caps the performance of the system, as for each selected
subtree a different and better context can exist in the children. The crucial
difference between previous work and that presented in this paper is that our
method always determines the best context, and so preserves the context from
parent to child when it is beneficial.

3 Importance of Context in GP

The importance of the context of a subtree in its respective parent tree is already
discussed in detail [2][7]. As shown in [6] the significance of a subtree can be
evaluated by calculating its fitness contribution towards the fitness of the tree
containing it (the container-tree). A small change in the context or position (with
the same context) of a subtree within its container-tree can have significant effect
on the container-tree’s fitness.By maximizing a subtree’s fitness contribution,
we can identify the best possible context of a subtree in a particular container-
tree. It has also been shown that the significant subtrees (schemata) within a
population tend to increase their size and fitness contributions towards their
respective container-trees with time. Unfortunately, standard subtree crossover
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works syntactically and has no respect for the current context of the subtrees.
This is the main reason for its destructive nature. To make it constructive we
have to make it context (semantics) aware.

3.1 Context-Aware Crossover

During crossover, by incorporating a subtree in its best possible context we can
make a crossover least destructive if not constructive. Using this idea, we have
devised a context-aware crossover operator. It finds the best context (hence the
best crossover point) of a subtree by examining all possible contexts in which
the subtree can be used during crossover.

Next GenerationPool of offsprings Best Individual
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Fig. 1. Context aware crossover. Shaded nodes in parent-1 are possible crossover points
where selected-subtree from parent-2 can go in. Maximum tree-depth is set to 5 in this
example. Root node cannot be selected as a crossover point. All generated children are
evaluated and the best one will go in the next generation. Same process is repeated for
the selected-subtree from parent-1 (Not shown to make figure readable).

Fig. 1 shows the operation of this crossover. To make the figure more read-
able we have set tree-depth to five for this example. Two parents are selected
for crossover using some selection scheme1, and the root node (node 1 of each
parent) cannot be selected as a crossover point. In the example, node 2 of par-
ent 2 is selected randomly as a crossover point (the subtree is shown shaded
in parent 2). In the next step, all possible crossover points producing valid off-
springs are selected as crossover points in parent 1 (shaded nodes of parent 1).
By valid offsprings we mean those individuals which fulfill the initial criteria
laid down before the start of a run, such as maximum depth, node count and so
on. The selection of all possible crossover points in parent 1 ensures the identi-
fication of the best context of the selected subtree of parent 2 in parent 1. The
selection of the crossover points is followed by generation of a pool of offsprings
1 The operator works indendantly of the selection scheme.
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and their evaluation. The best individual among them is introduced in the next
generation.

3.2 Context-Aware Crossover as a Refinement Operator

Context-aware crossover can be viewed as a local search operator, as it performs
a brute force search for the best possible context for the selected subtree. Because
the best context is chosen, as opposed to a random context as in standard GP
crossover, smaller jumps in the search space tend to be made than with standard
crossover, although context-aware crossover is more likely to make improvements
in fitness.

In [1] it has been shown that standard GP crossover is most effective in
the initial stages of a run, because it is a global search operator. It performs
relatively poorly towards the end of a run, when what is needed is more of
refinement operator. Therefore, it is reasonable to use standard GP crossover in
the initial stages of a run and use context-aware crossover in the later stages.
We have defined a linear polynomial which dynamically shifts the probability of
these operators. It is shown in equations 1 and 2.

norm xover prob = 1 − (curr gen/max gen) (1)

context aware prob = 1 − norm xover prob (2)

Where norm xover prob and context aware prob are standard crossover prob-
ability and context-aware crossover probability respectively. curr gen is the
current generation in progress and max gen is the max number of allowed gener-
ations. These equations clearly show that the values of norm xover prob varies
from one to zero, whereas the value of context aware prob varies from zero to
one as evolution progresses. No effort has been made to optimize the rate at
which the proportions change.

4 Experimental Setup

The proposed crossover operator was tested on different set of problems. These
problems include Koza’s Quartic Polynomial Symbolic Regression problem, the
11-bit multiplexer problem, the Lawnmower problem, the Santa-Fe Ant Trail,
and the Two-Boxes problem. Due to space constraints we will only discuss the
first three. These problems were chosen because they represent a broad selection
of problem types and difficulties.

The symbolic regression problem is representative of possibly the most com-
monly examined problem in GP, the 11-bit multiplexer is a very difficult problem
without ADFs, and the Lawnmower problem is a useful scalable problem.

To facilitate data collection, all experiments were allowed to complete the
maximum number of generations. The initial population was generated using
the ramped half and half method, with initial tree depths varying from two to
six, and the maximum depth of the trees was set to 17. All results were averaged
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over 100 runs. Two sets of experiments were conducted for each problem, one
using standard GP crossover and the other using context-aware crossover.

Context-aware crossover is inherently more expensive than standard crossover,
as each pair of parents selected for crossover can result in multiple individuals
being evaluated. However, to make a fair comparison, the experiments that em-
ploy context-aware crossover use smaller populations, so that the total number of
evaluations is kept lower than those required by the experiments using standard
crossover.

When using standard crossover, the probabilities of cross and reproduction
employed were 0.9 and 0.1 respectively. For the context-aware crossover, the
reproduction operator was replaced by the context-aware crossover, as it is an
inherently preservative operator. As mentioned above, the two crossover opera-
tors were employed with varying probabilities, and the same polynomials were
used in all experiments.

At the end of experiments four types of graphs were plotted. A brief descrip-
tion of each is as follows.

The Performance Graph shows the comparison of the fitness improvements
over generations. The average, best and worst fitness values of each generation
are plotted for each crossover.

The Running Evaluation Count graph keeps track of the cumulative sum of
individual-evaluations done during each generation. This graph along with per-
formance graph helps to calculate average computational effort required by each
crossover to attain certain fitness value.

The Evaluations per generation graph shows the cost of each crossover per
generation. The count of the number of evaluations done per generation by a
crossover is noted at the end of each generation. These values are used to plot
the running evaluation count graphs.

The Program size graph shows the amount of bloat generated by each crossover
operator. The program size of an individual effects, considerably, the computa-
tional effort required for its evaluation. Compact programs (fewer nodes) need
less computation effort for their evaluations.

4.1 Quartic Polynomial Symbolic Regression

To show the performance of the context-aware crossover on the symbolic regres-
sion domain we attempted to solve Koza’s quartic polynomial (x4 +x3 +x2 +x)
problem. Our experimental setup details are similar to Koza’s implementation.
For standard subtree crossover, a population size of 4500 was evolved for 100
generations. For the context-aware crossover, the population size was reduced to
200. Fitness proportionate selection was used for selecting parents. The results
for the experiment are shown in Fig. 2.

Fig. 2 (Top-Left) shows the performance comparison of the two operators. The
overall performance (the best and average curves) of the context-aware crossover
is better than the standard subtree crossover.

After 40 generations, the best fitness curve for the context-aware crossover
passes that of the standard crossover, while after 90 generations the average
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Fig. 2. Top-Left: Performance comparison of standard and context-aware crossovers.
Avg Norm, Bst Norm, Wst Norm are the average, best and worst fitness values respec-
tively using standard crossover. Similarly, Avg Var, Bst Var, Wst Var are the average,
best and worst fitness values respectively using context-aware crossover. Top-Right:
Running sum of the evaluations for each crossover. Bottom-Left: Evaluation counts
per generation for each crossover. Bottom-Right: Program sizes (node count) of the
individuals in a population.

fitness curve for the context-aware crossover passes it. Initially, the system using
standard subtree crossover shows a faster increase in fitness, but this plateaus
relatively early.

Fig. 2 (Top-Right) indicates that the context-aware crossover needs substan-
tially fewer individual evaluations to achieve the same fitness values as achieved
by standard subtree crossover. For example, at generation 40, the performance
of both the crossovers is exactly the same. The context-aware crossover needs
three times fewer evaluations to achieve this fitness value as compared to its
counterpart.

Fig. 2 (Bottom-Left) shows the count of the evaluations at the end of each
generation. The evaluations count is smaller for the context-aware crossover in
the initial generations due to the smaller probability of the use of the context-
aware crossover.

In Fig. 2 (Bottom-Right) we see that the size of the individuals generated by
each crossover. Clearly, throughout the evolution, the context-aware crossover
generates smaller programs, while standard subtree crossover generates very
bloated individuals, especially in the latter stages of the run. The curve for
the context-aware crossover has become increasingly more flat over time without
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effecting the fitness adversely. We argue that the reduction in the individual-sizes
is due to the elimination of the dead code from the individual trees.

4.2 Boolean 11-Multiplexer

The multiplexer problem was implemented to observe the performance of the
context-aware crossover on the hard problems; standard GP cannot solve the
6-bit or higher multiplexer problems. For this reason, ADFs were introduced to
this problem and helped to solve it. Our aim here is not to solve the problem,
however, but to compare the performance of standard subtree crossover and
the context-aware crossover in the identical environments, therefore we tried to
solve this problem with the conventional non-ADF setup. For standard subtree
crossover a population of 2000 was allowed to evolve for 50 generations. For the
context-aware crossover experiments, the population size was reduced to 50, and
both sets of experiments employed fitness proportionate selection. The results
are shown in Fig. 3.

Fig. 3 (Top-Left) shows the performance comparison of the two crossover
operators. As expected, the standard GP setup found it difficult to evolve good
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Fig. 3. Top-Left: Performance comparison of standard and context-aware crossovers.
Avg Norm, Bst Norm, Wst Norm are the average, best and worst fitness values respec-
tively using standard crossover. Similarly, Avg Var, Bst Var, Wst Var are the average,
best and worst fitness values respectively using context-aware crossover. Top-Right:
Running sum of the evaluations for each crossover. Bottom-Left: Evaluation counts
per generation for each crossover. Bottom-Right: Program sizes (node count) of the
individuals in a population.
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individuals throughout the evolution and was stuck at a constant fitness value
throughout the run. On the other hand the context-aware crossover started with
lower fitness values (due to the smaller population used) than standard subtree
crossover but, showed improvement in all the three fitness values throughout
the run, particularly towards the end. Recall that towards the end of the run
the context-aware crossover is the major crossover operator due to the use of
variable crossover rates.

In Fig. 3 (Top-Right) we see that the evaluations count for the context-aware
crossover remains quite lower than the subtree crossover evaluations throughout
the run. It is a very encouraging result because not only the context-aware
crossover is able to improve the fitness, but does so by evaluating substantially
fewer individuals.

Fig. 3 (Bottom-Left) shows the evaluations per generation for each crossover.
For the context-aware crossover it is increasing with time due to change in the
individual sizes and depths.

Fig. 3 (Bottom-Right) shows that beyond the 30th generation the context-
aware crossover has generated substantially larger trees than standard subtree
crossover. One possible reason is the inability of standard crossover to improve
fitness during the run. It is important to note here that the context-aware
crossover has generated individuals smaller in size than the ones generated by
standard subtree crossover prior to the 30th generation, and that not only they
are smaller in size but are better in performance.

4.3 Lawnmower

As mentioned earlier, this problem is selected to show the performance of the
proposed crossover on ADF based problems. We have tried to use the same setup
that was employed by Koza [5] in his implementation. For the standard crossover
experiments, a population of size 2000 was evolved for 20 generations, whereas
for context-aware crossover a population size of 100 was evolved for the same
number of generations. For both sets of experiments, tournament selection with
size 7 was used. We employed the same function and terminal sets as used by
Koza.

Fig. 4 contains the results, with Fig. 4 (Top-Left) showing the fitness plots
for the two crossover operators. The best fitness curves for both the crossover
operators are almost the same, but there is a big gap between the average fitness
curves. For the context-aware crossover it is as high as 0.9 whereas for standard
subtree crossover is under 0.2 and quite flat.

Despite producing a number of high performing individuals, albeit more slowly
than the context-aware crossover, standard crossover has a considerably lower
average fitness measure. This low fitness value is a consequence of the destructive
nature of the crossover. The context-free crossover, on the other hand, has im-
proved the population by placing the subtrees of the individuals of a population
in their best context.

Fig. 4 (Top-Right) shows the cumulative sum of the evaluations done per
generation by each crossover. By inspecting this graph along with the fitness
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Fig. 4. Top-Left: Performance comparison of standard and context-aware crossovers.
Avg Norm, Bst Norm, Wst Norm are the average, best and worst fitness values respec-
tively using standard crossover. Similarly, Avg Var, Bst Var, Wst Var are the average,
best and worst fitness values respectively using context-aware crossover. Top-Right:
Running sum of the evaluations for each crossover. Bottom-Left: Evaluation counts
per generation for each crossover. Bottom-Right: Program sizes (node count) of the
individuals in a population.

performance graph (Top-Left) we can estimate the speed of the convergence
of each crossover operator. For the context-aware crossover, the best fitness
value (which is very close to the perfect value) is attained in the 12th gener-
ation, whereas standard subtree crossover needs 20 generations to attain the
same fitness value. The context-aware crossover needs 17,000 evaluations (Top-
Right generation 12) to attain this fitness value as compared to standard subtree
crossover’s 40,000 evaluations (Top-Right generation 20).

Fig. 4 (Bottom-Left) is the comparison of the evaluations done per genera-
tion by each crossover operator. As expected, the evaluations count of standard
subtree crossover remains constant to the population size whereas it increases
linearly for the context-aware crossover.

Fig. 4 (Bottom-Right) shows the amount of bloat produced by each crossover.
In the case of standard subtree crossover the trees are constantly increasing
(bloating) but for the context-aware crossover their size remains constant to a
lower value after the 9th generation. This is a clear indication of the fact that the
context-aware crossover has attained the maximum fitness value quickly by eval-
uating substantially fewer, smaller individuals than standard subtree crossover.
The main reason behind this bloat control is the elimination of dead code(nodes
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not contributing to the individual’s fitness) from the individuals after their eval-
uations. Notice that small-sized individuals require less computational effort for
their evaluations therefore, the context-aware operator not only requires less
number of evaluations but is less expensive on each evaluation.

5 Discussion

The proposed context-aware crossover operator has performed consistently well
on different problem domains. By finding the best context of the selected subtrees
in the children we are able to reduce the destructive effects of standard subtree
crossover. This resulted in an improved average fitness for the population, and it
can also be observed that the context-aware crossover has successfully controlled
the code bloat in most of the tested problems.

Using smaller population sizes, and by varying the use of the context-aware
crossover with time, we were able to ensure that the total number of individuals
evaluated did not exceed that evaluated by standard GP.

On the quartic polynomial symbolic regression problem the context-aware
crossover has significantly improved the best and average fitness values of the
population. The computational effort required to achieve it is also reduced many
fold. Additionally, it has managed to control code bloat by producing compact
programs unlike standard subtree crossover.

On the 11-bit multiplexer problem the context-aware crossover has shown im-
proved fitness in the later generations. Notice that standard subtree crossover
is unable to show any fitness improvement throughout the run. As in the sym-
bolic regression problem, in this problem too the context-aware crossover has
achieved better performance using less computational effort than standard sub-
tree crossover.

Finally, on the lawnmower problem the context-aware crossover resulted in the
rapid increase in the fitness without becoming expensive. For this problem the
size of the generated programs was almost constant without adversely effecting
the performance of the system in the later generations.

6 Conclusions

We have introduced a new context-aware crossover operator which has been
successfully tested on several different problem domains. The results shown are
promising on all the problems used.

It has the ability to find better and different crossover points for a given subtree
in different parent trees. This is accomplished by placing the subtree in various po-
sitions in the parent tree and then calculating the effect on the parent tree’s fitness.

The use of the proposed method has produced improvements in both mean
best fitness and mean average fitness, reduced bloat in most of the tested prob-
lems, and has produced significantly smaller individuals in most cases.

Although each context-aware crossover can result in multiple evaluations, we
have found that in all of the problems examined, it produced fitter individuals
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with fewer evaluations than standard crossover. This is because context-aware
crossover permits the use of much smaller populations, and that the probability
of its use is varied linearly with time.

6.1 Future Work

Currently, only one offspring from each crossover enters the next generation.
Future work will look at how to increase this without the population converging
too quickly. We believe this will help us to reduce the evaluations count per
generation.

We will also examine the possibility of use of some method other than ran-
dom selection to choose the subtree to be swapped in the first place. It may be
possible to maintain a history of improvements by all subtrees to bias selection
towards them.

Finally, the application of the operator is currently varied linearly over time.
There may be some benefit is being more selective about its application, possibly
based on the rate of improvement of the population.
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Abstract. Speed, cost, and accuracy are crucial performance parame-
ters while evaluating the quality of information and query retrieval within
any Database Management System. For some queries it may be possi-
ble to derive a similar result set using an approximate query answering
algorithm or tool when the perfect/exact results are not required. Query
approximation becomes useful when the following conditions are true: (a)
a high percentage of the relevant data is retrieved correctly, (b) irrelevant
or extra data is minimized, and (c) an approximate answer (if available)
results in significant (notable) savings in terms of the overall query cost
and retrieval time. In this paper we discuss a novel approach for approxi-
mate query answering using Genetic Programming (GP) paradigms. We
have developed an evolutionary computing based query space exploration
framework which, given an input query and the database schema, uses
tree-based GP to generate and evaluate approximate query candidates,
automatically. We highlight and discuss various avenues of exploration
and evaluate the success of our experiments based on the speed, cost,
and accuracy of the results retrieved by the re-formulated (GP gener-
ated) queries and present the results on a variety of query types for
TPC-benchmark and PKDD-benchmark datasets.

1 Introduction

Query processors in most modern database management systems include some
form of query approximation or query optimization component(s). There are
several scenarios where an exact answer may not be required and the end-user
may prefer a fast approximate answer. For example, say the exact answer to
the query: Find the number of employees with salary greater than ε 50,000 is
48 employees and it takes 6 hours to run the query. On the other hand, an
approximate query answering system may return the answer, “50 employees”
in 6 seconds. If the original query was intended to gain a general idea about
the underlying data, the approximate query has saved a significant amount of
time and effort. Further demonstrating its usefulness, the approximate query
answering system can also provide appropriate confidence bounds to advise the
user of the validity of the approximate answer as compared to the exact answer.
i.e. 50 (+/- 5 employees) as in the previous example.

P. Collet et al. (Eds.): EuroGP 2006, LNCS 3905, pp. 49–60, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Query processors typically perform several optimizations and approximations
on-the-fly as queries are presented in a pervasive manner without specific di-
rection from the end-user. Two such systems currently exist: AutoAdmin from
Microsoft, and the Aqua project from Bell Laboratories. AutoAdmin is a self-
tuning and self-administering system for the MS SQL Server DBMS. Using an
index tuning wizard, a database administrator can optimize a database rela-
tively easily and inexpensively [http://research.microsoft.com/dmx/autoadmin/
default.asp]. Aqua is a visualization tool designed for approximate query answer-
ing and can be used with SQL-Compliant DBMS. Aqua pre-computes statistical
summaries of data, generally in the form of histograms. One of its key features is
that it provides error/confidence bounds on the answer returned [1]. Conversely,
most query optimization is interactive in nature where the data analyst has ef-
fective domain knowledge of the underlying relations, indices and constraints to
speed up or approximate the query by hand.

All of this, typically, is based on the query plan for the original query. The
database system, in itself, proposes efficient ways of restructuring the query plan
based on statistical analysis of the underlying database using histograms and
other data summarization techniques [6]. Roughly twenty years ago, logic based
approaches and semantic transformations were proposed to solve this problem
[5]. As the level of statistical analysis techniques improve, efficient user interac-
tion provides even greater insight and value to the overall optimization process.
One case in point example is the Microsoft SQL-Server 2005’s query optimizer,
which takes a query and creates a parse tree for it. From the parse tree of the
query, statistical information, such as, (a) estimated IO Time, (b) estimated
CPU Time, (c) estimated rows resulting from a Join, (d) estimated to-
tal subtree cost, etc. is computed and translated into various types of query
costs. The main idea is to make use of the statistics that the DBMS provides, and
to use them to approximate/optimize queries, no matter the implementation.

Such statistics then indicate an aggregate query cost estimate. The entire
process of generating a parse tree, computing statistics, and estimating query
costs accompanies the generation of a query plan for the original input query.
The query processor will then (typically) try and come up with several different
permutations of the parse tree, and assess the different individual costs associated
with each parse tree. For example, using relational algebra, different operator
trees can implement the same algebraic expressions [2]. Equation 1 shows how
two join orders result in equivalent tuple sets but might have different query
costs associated with them based on the size and order of the intermediate joins:

((A � B) � C) ∼= ((B � C) � A) (1)

The focus of the work presented in this paper is the development of a query
processor that presents the DBMS with a re-formulated query using GP such
that its result set is similar to that of the original input query, yet is superior
to the original query in terms of speed and cost. The resulting query may differ
in the overall structure from the input query and the output is a new query
plan that returns the same, or approximately the same, result set as the original
query.
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This implementation differs from other prior frameworks. Prior attempts
at using evolutionary computation techniques for approximate query answer-
ing have focused on a single relation or on specific join operations. The GP
implementation used in [8] attempts to optimize the different � algorithms.
The operator tree is made up of specific � operations and the relations being
joined, using standard TREE crossover operations to recombine parents to de-
velop children queries. Ours is a multi-relational implementation designed to
search the schema space of a database for referential ties to the input query’s
select attributes. In other words, since the input query’s select attributes tend
to be distributed throughout the database as primary and foreign keys, the
same values can occur in other tables under the same, or different, attribute
names. In some cases optimization can be accomplished by building a new query
that uses the attributes of some other table in the schema as long as those
new attributes can be formally mapped back to the original input query’s at-
tributes through key references. Using these references, a tool can look deeper
into the data and take advantage of certain aspects of the relationships
between database entities. Further, using the primary and foreign key rela-
tionships of the schema to find and join data allows an approximator to take
advantage of the built in efficiency of using the indices placed on those keys by
the DBMS.

1.1 Problem Formulation

The approximate query answering problem we are trying to solve using this GP
based implementation can be defined as follows:

Definition 1. Approximate Query: Find a query Qx such that:

CQi >= CQo
i
>= CQx (2)

and
τQi = τQo

i
≈ τQx (3)

where CQi represents the cost of executing query Qi and τQi represents the
accuracy of Qi.

Hence, the idea is to search the query space using a heuristic search procedure.
This search procedure is a multi-objective optimization problem where the goal
is to minimize the query processing costs and maximize the accuracy of the query
results. The objective is to build a GP framework which searches different subsets
of the schema iteratively, one candidate query at a time, calculating different val-
ues such as cost, time, and accuracy. All of these calculations are valuable to the
query processor while performing approximations and/or optimizations. These
metrics apply both to this GP based algorithm and to other standard DBMS
algorithms. The job of this GP is to exploit all of these inter-relationships such
that they produce proper optimizations which eventually yield a very accurate
(as high as 100%) approximation of the correct result set in significantly less
time and with a substantially smaller cost.
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Fig. 1. Overall architecture of the proposed GP based Approximate Query Answering
System. The upper portion of the diagram describes the traditional query processor,
while the lower portion describes components of the proposed GP based system.

Figure 1 shows that the traditional query processor typically accepts an in-
put query Qi and passes it to the parser to generate alternative query plans.
The query plan cost estimator provides the cost of each plan to the optimal
plan selector. The optimal plan selector then decides the optimal query plan
for execution as specified by Qo

i. The lower portion of the figure describes our
implementation. Beginning with the optimal query plan Qo

i for query Qi and
the database schema, this algorithm randomly generates a population of alter-
nate query plans and uses the query plan cost estimator provided by the native
database engine to estimate the cost of these plans. The most efficient plans
are selected from this initial population and the queries are executed to collect
query statistics. The accuracies of the candidate queries are collated to evalu-
ate the quality of approximation. The best candidates are selected for further
evolution according to the specified GP algorithm. This process continues for a
predetermined number of iterations or until a specific termination criterion is
met. Typical termination criteria may be a predefined accuracy threshold, or
any other such fitness measure.

1.2 Background and Related Work

There is a substantial body of work available for review in the fields of query
optimization and query approximation. We note the most important and re-
lated efforts in this section. The major effort for optimization deals with cost
analysis of queries based on different attributes. Query optimizers have to it-
erate, efficiently, through different parse trees for each query to decide on an
optimal query plan. Traditional query optimizers tend not to enumerate all
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possibilities for query plans due to computational constraints. The query op-
timizer prunes the plan space while enumerating plans in order to meet these
constraints. Such pruning significantly reduces the amount of space and time an
optimizer requires for queries that contain a lot of Joins. Generally this prun-
ing is done using dynamic programming (DP) algorithms. Hellerstein proposed
one such popular DP based approach [4]. Earlier efforts include the work by
Graefe et al where many techniques are surveyed for executing complex queries
over large data sets [3]. Steinbrunn et. al. [7] outline other algorithms such as
deterministic algorithms, dynamic programming solutions, minimum selectivity,
Krishnamurty-Boral-Zanialo (KBZ) algorithm, the AB algorithm, randomized
algorithms, iterative improvement, simulated annealing, two phase optimiza-
tion, toured simulated annealing, and random sampling as relevant heuristic
optimizations for the join ordering problem. They also explain the use of genetic
algorithms (GA) as a query optimization technique.

2 The AQUAGP Framework

The overall architecture of the proposed framework was described in Figure 1.
The user defined query Qi and the database schema are used as input to the
system. In traditional databases the input query follows a certain path to ex-
ecution. The job of the query optimizer is to produce an alternate query, Qo

i,
based on the inherent properties (types) of the query, the meta-data available
to the optimizer and the database schema. Our goal was to demonstrate that it
is possible to extend the query optimizer further by including a GP based query
optimization routine that lowers the query cost significantly without resulting
in inaccurate results.

The simplest approach to develop a GP based system would be to take the
original query Qi as the input query, evolve several combinations of the query
based on this input and the underlying schema and evaluate each candidate
query for its query cost to find the most optimal query plan. There are several
problems with this approach. The first and the foremost problem is ‘semantic
mapping.’ Since the query space is very large for such a problem every possible
query posed to the underlying database can be a candidate query. In fact one
can see why it will be impossible to establish the internal logical consistency
of what an optimal query might mean in this context since we will have to
adopt principles of reasoning so complex that their internal consistency will be
as open to interpretation as the optimal query itself (somewhat like Gődel’s
incompleteness proof). On the other hand developing a heuristic system that is
constrained by semantic considerations and follows a logical query plan when
searching for the optimal query within the constrained set of parameters might
actually result in an alternative query plan that has an effective cost less than
the original query plan. For this reason the framework uses the original input
query and the query Qo

i- the optimal version of some input query, as calculated
by a native DBMS system (MS SQL Server 2005 in our case) , as seed queries.
The population of candidate queries of is a parameter of the system denoted by
n and the candidate queries are denoted by Q1, Q2, ..., Qn−1, Qn.
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Framework Components. The first component of our GP framework is an
automatic query generator. Automatic query generation is a complicated task
requiring significant constraint processing efforts. To generate queries, efficiently,
a database needs to be represented in terms of its meta data, such that the
schema can be examined and the complex relationships between entities can
be understood. Due to space constraints we do not describe how a database’s
schema can be used to generate random candidate queries using the attributes
of the input query in this paper.

3 GP Based Candidate Query Generation: Parameters
and Issues

3.1 Fitness Evaluation

Fitness evaluation of any query Qx is based on a few different pieces of informa-
tion about the query. The following statistics, about a given query Q, must be
derived:

1. The execution time of the query (in seconds).
2. The estimated cost of the query, which is based on:

(a) The estimated CPU time.
(b) The estimated IO time.
(c) The estimated number of rows a � (join) will cause.
(d) The estimated total subtree cost.

3. The resulting set of information that the query returns when executed.

From the meta-data, query cost estimates, and other such information pro-
vided by the DBMS, we developed a function to evaluate the GP fitness such
that the value returned is a normalized value on the interval (0, 1] where a fit-
ness of 1 indicates the best possible individual in a given population and 0 is
the worst. During query evolution, two quantitative criteria can be minimized
as discussed earlier. These entities, time and cost, are denoted as TQx and CQx

respectively. A third qualitative measure is a query’s accuracy in comparison to
the optimal query, denoted as τQx .

Calculating the accuracy of all generated candidate queries is computation-
ally infeasible. In fact, even for a reduced set of queries, a large portion of the
randomly generated queries take an extremely long time to execute. Thus, the
initial set of queries, whose accuracy the GP will examine, must be pruned. To
facilitate pruning, a “costFitness” value is introduced. costFitness can be used
to weed out the poorly formed queries that would take too long to execute. The
costFitness formula is comprised of four components as follows:

ioF it(Qx) = (Qo
i.io/(Qx.io + Qo

i.io)) (4)

cpuF it(Qx) = (Qo
i.cpu/(Qx.cpu + Qo

i.cpu)) (5)

rowFit(Qx) = (Qo
i.row/(Qx.row + Qo

i.row)) (6)
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streeF it(Qx) = (Qo
i.stree/(Qx.stree + Qo

i.stree)) (7)

costF itness(Qx) = (8)
((ioF it(Qx) ∗ W1) + (cpuF it(Qx) ∗ W2) (9)
+ (rowFit(Qx) ∗ W3) + (streeF it(Qx) ∗ W4))/100 (10)

where Wi = the weight of that particular fitness in the costFitness calculation,
and W1 + . . . + W4 = 100.

The costFitness value of any query lies in the interval (0, 1]. It is an estimate
of how fast the query would take to complete, if it were actually executed. The
framework has a hard coded costFitness threshold, ρ (ρ = 0.7 in our implemen-
tation) which is used to prune queries whose costF itness < ρ.

Given a pruned population of test queries, accuracy is calculated by examining
the results returned (qx.r) from both the current and optimal queries in the
following manner:

inaccuracy(Qx) = |Qo
i.r

⋃
Qx.r| − |Qo

i.r
⋂

Qx.r| (11)

accuracyQx =
|Qo

i.r|
|Qo

i.r| + inaccuracy(Qx)
(12)

The initial query result set, Qo
i.r, is the standard by which accuracy is measured.

Inaccuracy of the test query, Qx, can be defined, concretely, as the set of tuples
which are returned by either query but do not appear in the intersection. Clearly,
the lower the value of inaccuracy(Qx), the more similar the result sets. The
results of measuring inaccuracy are normalized on the interval, (0, 1], in the
accuracy(Qx) function.

A similar procedure is defined for determining the actual execution time of the
query. Each query’s execution time is measured and tabulated, and an efficiency
function is used to derive a normalized value over the interval, (0, 1]:

efficiency(Qx) =
Qo

i.t

Qo
i.t + Qx.t

(13)

The accuracy and efficiency of a particular query is formalized in the following
equation:

Fitness(Qx) = accuracy(Qx) ∗ efficiency(Qx) (14)

Any query whose fitness exceeds 0.5 is considered “better than” the initial query,
Q0

i, as Fitness(Qo
i) = 0.5. The strength of this fitness equation is that it

favors neither criterion at the expense of the other. Queries which show perfect
performance in one area, and abysmal performance in the other will not be
ranked higher than the initial query.

3.2 Query Tree Crossover

Next, we describe the GP crossover operation as implemented for generating
approximate query plans. Assuming all queries within this system have the fol-
lowing structure:
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SELECT <s_list>
FROM <f_list>
WHERE <w_list>

where any < ∗ list > is a list of valid strings that can be placed in that part
of the query to generate valid SQL syntax and semantics. During SELECT list
crossover, one of the biggest obstacles we had to overcome was making sure that
attributes of a certain data type were compared only with other attributes of the
same data type that corresponded to the same data in the schema. Although
everything cannot be restricted, it is necessary to impose restrictions on how
pieces are compared and how much comparing actually gets done. From two
parent queries, the crossover operation does its work in three main steps:

1. Iterate for the number of SELECT attributes (each parent will have the
same number of SELECT attributes) and at each iteration randomly take the
corresponding attribute from one of the two parents. Create a new < f list >
and fill it with all of the required tables corresponding to the new set of
SELECT attributes in the new < s list >.

2. Combine the < w list >’s from both parent queries and randomly select
a subset of that list to create a new < w list > for the offspring. If not
already added, append any necessary parent tables to the < f list > to
accommodate the WHERE clause.

3. Construct the new child query from the newly generated < s list >, <
f list >, and < w list >.

This crossover process results in evolving semantically equivalent (albeit in a
limited context of this implementation) candidate queries.

3.3 Query Tree Mutation

We developed the GP mutations to focus exclusively on the WHERE clause
portion of the queries. The rationale behind this decision is that the WHERE
clause is more than likely the key determining factor in how accurate a randomly
generated query will be. Each mutation operation consists of the following steps:

1. Separate the where clauses into the individual clause types (i.e. LIKE, BE-
TWEEN, predicate). Ignore wiring (join defining) and nested clauses.

2. Randomly generate new values for the LIKE, BETWEEN, and predicate
clauses of the query. This must be done with consideration of the data type
and range of the attributes being mutated. Both measures are available via
meta data from the schema.

3. Randomly insert or remove NOT operators to negate the current function-
ality of each clause.

4. Randomly select AND and OR operators to be placed between the clauses.
We favored AND’s in this step to decrease the chances of creating overly
complex, and therefore inefficient, queries.
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4 Experiments and Results

We used the MS Visual Studio 2005 IDE, C#, and Microsoft SQLServer 2005 Beta
2 June CTP consisting of native query parsing and cost estimators, as the develop-
ment platform. Experiments were conducted on an IBM PC with an Intel Pentium
4 processor with 1GB RAM. The two datasets used include: (a) The PKDD Cup
Multi-relational transaction dataset, and (b) the TPC-H benchmark dataset con-
taining business transaction data. Recall, that the idea is to evolve new queries,
efficiently, evaluate their fitnesses, and determine if they meet the accuracy crite-
rion as approximate queries for the original queries. For simplicity of explanation,
we divide the discussion in two subsections; one containing results from the gen-
erational GP implementation, and the second containing results from the steady-
state GP implementation. For both of the GP strategies we evolve queries of the
following types: (i) 2-table join without projection, (ii)2-table join with projec-
tion, (iii) 3-table join without projection, and (iv) 3-table join with projection.
The complexity of various queries broadly depends on the join condition and de-
pending on the constraints if projections can/need be achieved prior or post join.
Queries over both the datasets mentioned above were computed for all 4 of the
above categories and results were evaluated. Figure 2 describes the comparison
between the optimal query as proposed by query plan analyzer built into the MS
SQL Server 2005 and the cost of executing the GP generated best fit candidate
query. The accuracy threshold was set to 80% for this plot.

Generational GP Implementation. Table 1 contains the GP parameters
set as defaults in all test runs. Mid (0.5) to high (0.99) mutation rate leads

Fig. 2. Graph of Cost Reduction Comparison for Differing Query Types. This graph
shows a comparison between the cost of executing the original input query, Qi, the cost
of executing the optimal form of that query, Qo

i, and the cost of executing our GP’s
best candidate query, Qx. The costs compared were all calculated for queries Qx which
return results with an accuracy of 80% or greater. Results are shown for queries of the
following types: 2-table join without projection, 2-table join with projection, 3-table
join without projection and 3-table join with projection.
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Table 1. Default parameter values for Generational and Steady-State GP implemen-
tations

Parameter Value: Generational Value: Steady-State
Population Size 100 100

Generations 20 n/a
Loops n/a 2000

Selection Size 10 5
Percentage of Copies 20% n/a

Percentage of Crossovers 80% n/a
Desired Accuracy .85 .85
Mutation Rate 50% 50%
W1, W2, W3, W4 25 25

to faster convergence compared to lower rates. As shown in Figure 3(a) the
increase in fitness over a number of evaluations indicates progress towards con-
vergence. Average fitness levels such as 0.5 were quickly achieved irrespective
of the mutation rates. Since fitness is a measure proportional to accuracy of
the tuples returned, our understanding is that the generational GP based ap-
proximate query answering system finds an average fit query within the ini-
tial population most of the time and it takes some effort later on to fine tune
the candidate queries towards the most optimal query. This fact is apparent in
Figure 3(b), where fitness varies as a parameter of the population size. Large
population sizes tend to converge slowly, but this could be a dataset specific
phenomenon and could not be conclusively proved. Figure 3(c) demonstrates
the result of modifying the selection size on fitness and suggests that keeping
too few or too many parents in the newer population leads to sub-optimal local
minima.

Steady-State GP Implementation. Table 1 contains the GP parameters set
as defaults in all test runs for the steady-state GP implementation. As per the
generational algorithm mid (0.5) to high (.99) rates of mutation lead to faster
convergence as compared to lower mutation rates. These rates show a steady
progression of the most fit individual in our population. The need for higher mu-
tation rates is apparent in the determination of the proper constants and logical
operators that produce a well-formed query. In all cases, in Figure 4(a), we see
an average individual, generally with fitness of .5, within the initial population.
However, these fitness levels indicate that they are efficient enough to execute,
but not accurate enough to be suitable for our purpose. Mutation leads to better
individuals in later iterations of the steady-state GP. Figure 4(b) shows that con-
vergence varies with population size. Finally, Figure 4(c) demonstrates the use of
different selection sizes on the populations. When the selection/tournament size
is too low (2) convergence may not occur in the specified number of iterations.
But given too high a selection size (>18) leads to drastic over fitting of a non
optimal minimum. Figure 4(c) suggests that selection size (6-10) leads to fast
convergence with a higher accuracy.
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(a) mutation (b) population

(a) selection

Fig. 3. The effects of different parameters on the generational algorithm

(a) Mutation (b) Population Size (c) Selection

Fig. 4. The effects of different parameters on the steady-state algorithm

5 Summary and Discussion

In this paper we described a novel approach for approximate query answering
using Genetic Programming. We evaluated different GP techniques for generat-
ing approximate queries and then developed a cost model to determine how fit a
given candidate query is compared to the original query in terms of the results
returned. The framework described in this paper handles a variety of queries
involving relational joins, multi-joins, projections, and select project joins. The
current framework can be extended to include an enhanced tree-generation mod-
ule and a semantic constraint verification module that will allow greater flexi-
bility with respect to the queries that the framework can handle. Other models
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of GP such as linear GP might be suitable comparative techniques for query
generation compared to tree-based GP for searching through the query space.
Based on the speed, cost, and accuracy we derived methods to show that an
evolved query can result in an accurate approximation of an input query.
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Abstract. This paper introduces a new representation for assemblies of
small Lego�-like elements: structures are indirectly encoded as construc-
tion plans. This representation shows some interesting properties such
as hierarchy, modularity and easy constructibility checking by definition.
Together with this representation, efficient GP operators are introduced
that allow efficient and fast evolution, as witnessed by the results on two
construction problems that demonstrate that the proposed approach is
able to achieve both compactness and reusability of evolved components.

1 Introduction

In recent years, there have been many important achievements in the domain of
Evolutionary Design using Evolutionary Computation in general [2], and Genetic
Programming in particular [9]. These works range from evolving robots [10] to
the design of satellite antennas [11]. Among these works, there is a strong interest
for evolving constructions or robots using simple elements such as Lego bricks
[13, 8].

The work described in this paper aims at evolving complete structures from
small atomic elements (such as Lego� bricks or Kapla� elements) in order to
obtain walls, bridges and so on. Many representations have been proposed for
such constructions (see section 3), but many of them easily lead to either non-
physical structures (overlapping elements), or structures that are impossible to
actually construct (even though no element overlap).

One way to overcome this difficulty is to indirectly represent a structure
through a construction plan. Indeed, construction plans provide a rather ex-
pressive representation formalism, and Evolutionary Computation provides an
efficient way to evolve a plan (a genotype) such that the structure resulting from
the application of this plan (a phenotype) is optimal for given objectives. One
of the critical issues is then to provide evolution with efficient variation oper-
ators (crossover, and mutation) that explore some relevant part of the search
space.

This paper proposes BlindBuilder, a representation for indirect encoding of
structures that uses a direct representation for construction plans, described
as Directed Acyclic Graphs (DAG). The variation operators borrow from the
Embryogenic approaches of GP [6]. The paper is organized this following way:

Section 2 describes the framework of this work. Section 3 briefly reviews some
important contributions in the field of Evolutionary Design of assemblies of small
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elements, in both structural design (walls, bridges, tables and chairs, . . . ) and
robotics (evolving both the morphology and the controller of robots). Sections 4
and 5 present the contributions of this work regarding BlindBuilder, respectively
describing the language used to represent plans as DAGs, and the associated vari-
ation operators that have been defined to bias the exploration of such a search
space. Section 6 shows the results on several classical problems of structural de-
sign. As usual, the final section discusses the results and sketches some directions
for future work.

2 Problem Setting

The framework of this paper is the automatic building of constructions made
of small elements such as (but not limited to) Lego-like bricks. Such set of ele-
ments gives to the user a huge expressivity (endless possible constructions) with
very few biases (such elements are not targeted toward building any specific
constructions). The basic objective of this work is to provide an efficient encod-
ing language as well as the corresponding relevant variation operators to evolve
constructions that are optimal with respect to given objective functions (e.g.
filling space, building high-and-wide bridges, . . . ). An other longer-term goal is
to evolve element-based morphologies for mobile robots.

In the context of Evolutionary Design, the following three issues must be ad-
dressed: (1) Representation: what is the search space to explore? should direct
or indirect encoding be used? Can a given coding achieve generality, modularity,
robustness ; (2) Variation operators: How to design relevant crossover and
mutation operators to enable efficient evolution? (3) Evaluation and Simu-
lation: how to evaluate structures regarding some given objective function(s)?
Should the resulting structures be built and tested in the real world, though this
usually is far too time consuming? And if going for a simulated evaluation, how
to tackle the trade-off between precise but costly physical simulations and faster
but inaccurate heuristic computations?

The next section will survey how these issues have been addressed in the liter-
ature for similar Evolutionary Design problems, focusing on the representations
used to encode the structures.

3 Related Work

Representations for structures made of small elements can broadly be broken in
two categories: direct encoding representations encode the position of elements
in the environment; indirect encoding representations rely on a language that
specifies how to assemble the elements.

Indirect encoding is largely favored in the literature, be it in the field of
robotics or Structural Design, because it provides an easy and efficient way to
bias evolution towards relevant structures. A remarkable exception is that of
the GOLEM project [10] where real world implementation of evolved robots is
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achieved through a direct encoding that specifies anchor points that are linked
by rigid sticks. But most other works rely on some indirect encoding: Karl Sims
[15] evolves the building process of simulated robots through graph-based flow
machines; more recently, the TinkerBots project [8] relies on L-systems to indi-
rectly encode the construction process to build virtual and real world creatures.
In both cases, the use of grammar- or L-system-based encoding makes it possi-
ble to obtain highly modular representations. In the field of Structural Design,
[4] describe the evolution of a construction process that successfully builds 2D
cantilever bridges, and [13] introduces a DAG-based representation to represent
construction plans that are used to build small constructions such as pillars,
walls and staircases.

Some previous works [1, 7] have shown that such indirect encoding represen-
tations are indeed much more efficient than direct encoding representations. The
efficiency of an indirect encoding seems to have two main causes : compactness
and bias. Indirect encoding is more expressive than direct encoding thanks to the
possibility of reusing portions of the code; thus, appropriate factorisation in the
representation may occur, that makes it possible to have more expressive code
with shorter length, and, as a direct consequence, to speed up evolution. Indirect
encoding also makes it possible to potentially represent only part of all possi-
ble structures, i.e. only a specific class of physical structures can be expressed;
with the appropriate choice of implementation this enables the introduction of
relevant domain knowledge.

Thus, several important properties should be considered1 : modularity (the
ability to reuse a part of the construction plan. Modularity may or may not
be recursive) hierarchy (the ability to consider as one single element what has
already been built as opposed to having to target specific sub-elements for any
new operations) generality (the property according to which the representation
can be easily extended to accept new kind of elements), and 3D representation
(some representations only consider 2-D structures, or don’t scale-up well to 3-D
structures).

The main drawbacks of indirect encoding is that they usually achieve some
trade-off between language expressivity and constructibility. As a result, there
is a clear separation between works that rely on direct encoding approach and
that are actually implemented in the real world and works that exploit the
power of the indirect encoding approach but are usually limited to simulation.
A noteworthy exception is [8], where an indirect encoding approach is used to
build real-world robots; but the approach is limited to a rather small number of
elements.

Yet, it is possible to avoid, or at least limit, the problem of non constructibility
by relying on an indirect encoding approach that works in the space of construc-
tion plans as proposed in [13]. A construction plan is evaluated to build a physi-
cal structure through a sequence of construction operations. In [13], construction
plans are represented as Directed Acyclic Graphs where nodes are physical Lego

1 Note that in [7], some of these terms are used in the context of programs rather than
graphs, with different meaning.
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elements and arcs are connection operators. With such a representation, it is
possible to iteratively check at each construction step if the physical structure
is buildable rather than evaluating the whole structure only at the end of the
construction procedure.

4 BlindBuilder: A New Indirect Encoding Language

This section introduces BlindBuilder, an indirect encoding language for the de-
scription of construction plans. Basically, a BlindBuilder individual is a Directed
Acyclic Graph (DAG) where nodes can be either atomic elements (e.g. Lego-
elements, Kapla-Elements, Joints, Sticks, Tubes) offering connectors to other
elements, or construction operators of a given arity (e.g. Snap, ConnectWith-
HingeJoint, ConnectWithBallJoint) parameterized by the connections
they achieve between their arguments. More precisely :

– Atomic element are terminals of the DAG (i.e. they don’t have any argu-
ment since their arity is zero). However, they are not considered as physical
elements but rather as element templates that may be instantiated when
needed. Each element template is defined with a given geometry and a set of
connectors. Examples of atomic elements are Lego-elements, Kapla-elements
(that have 0 connectors), tubes, wheels, artificial muscles, servomotors.

– Construction operators are functional nodes with a fixed number (ar-
ity) of arguments, i.e. targeted sub-nodes in the DAG, that specify what
the defined function should be applied on (either other construction nodes
or atomic elements). Moreover, each construction operator has internal pa-
rameter that specify how to connect its arguments together and that are
subject to evolution. An example of a simple operator used in the follow-
ing is the Snap operator, that takes as arguments two elements to connect
(e.g. elements 1 and 2 ) as well as parameters that define the anchor points
and orientation. Snap is formally written as : Snap [element1 target con-
nector, element1 orientation connector, element2 target connector, element2
orientation connector] (element1 , element2) . The connector arguments are
used to pick up one actual connector from each argument-element (modulo
the number of connectors of the actual argument), and the orientation of
the connection is determined according to the orientation parameters (the
number of parameters is thus independent of the size of bricks).

A well-formed BlindBuilder individual is hence a DAG such that the atomic
elements are terminal nodes while the construction operators have as many sub-
nodes as their arity. Moreover, there is a unique special node called the top-
level operator (i.e. the entry point), so as to generate a single construction. The
program run when using such a DAG to build a structure starts from the top-
level operator and iteratively builds the structure by evaluating every operators
until all terminal elements have been reached.
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Fig. 1. A simple construction plan exam-
ple and the resulting structure. The pa-
rameters of the Snap operators are not
shown.

Figure 1 gives a very simple exam-
ple of a construction plan with such
properties together with the resulting
structure. As a matter of fact, this
example also illustrates some useful
properties of this representation: hi-
erarchy, when the snap operator at
the top (right) reuses the results of
its subgraph (at his left); and mod-
ularity, as four physical elements are
built from the same element template.
Moreover, as already mentioned, the
ability to work in the construction
space makes it possible to check for
constructibility at each steps of the DAG evaluation, thus reducing the chances
to obtain a non-constructible structure.

BlindBuilder is somewhat related to the graph-based approach described in
[13]. Both languages are represented by a DAG and rely on similar construc-
tion operators (e.g. the snap operator). However, BlindBuilder considers both
elements and construction operators as possible nodes of the graph. Moreover,
element nodes are considered as templates and instantiated into physical ele-
ments, which makes it possible to endow hierarchy as well as modularity 2.

To summarize, BlindBuilder implements a language that is hierarchical, mod-
ular, and general while focusing on buildable plans in 3 dimensions, thus depart-
ing from previous work in the literature. Moreover, no a priori assumption is
given for the definition of operators. It is hence possible to define a wide range
of operators, as will be described in next section. As a consequence, it should be
highlighted that all works described in section 3 can easily be expressed within
BlindBuilder framework – from Karl Sims’ creatures to Pollack’s GOLEM robots
and Lego-like constructions – as soon as the appropriate elements are properly
designed.

5 Variation Operators

In order to evolve BlindBuilder individuals, it is necessary to design variation
operators. Some examples of GP-based evolution of graphs exist in the literature
[16]. However, the DAGs resulting from the variation operators for BlindBuilder
must comply with the definition of a well-formed BlindBuilder individuals, as
stated in the previous section.

Classical operators in graph-based GP such as crossover (creating a construc-
tion plan from two existing plans) and mutation (altering a construction plan)
may be used to evolve a BlindBuilder DAG. However, two main problems arise.
First, performing even a syntactically correct crossover upon two DAGs may re-
sult in very different structures in the end because of the very structure of a DAG
2 While recursivity is possible, it is not yet implemented in the present work.
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Fig. 2. Effects of growForward, growBackward and split operators

(i.e. semantic) is ignored in the blind process of standard crossover. Because the
topology of BlindBuilder DAGs is of utter importance, no useful crossover op-
erator could be designed, and the evolutionary process described hereafter only
relies on mutation. Second, simple random mutation operator (i.e. replacing a
(group of) node(s) by randomly generated nodes) is confronted to the difficulty
of matching arities between deleted and inserted (group of) node(s).

However, though the proposed approach is definitely not an embryogenic ap-
proach, the operators used as nodes in the seminal work in embryogeny-inspired
GP [6] were used as inspiration for the present work and led to introducing the
following five mutation operators:

1. GrowForward (fig. 2-b): a new non-terminal node B is added downstream
from the target non-terminal node A. All arcs outgoing from A are connected
with B. B is randomly chosen among all operators with the same arity than
A, and its parameters are uniformly initialized;

2. GrowBackward : a new non-terminal node B is added upstream from the
target non-terminal node A. The ingoing arcs to A become ingoing arcs to
B. B is randomly chosen among all non-terminal node and its parameters
are uniformly initialized;

3. Split : target node A is split into B and C, two nodes at the same level.
Ingoing arcs to A are randomly assigned to B or C, while outgoing arcs are
duplicated. These new nodes are randomly chosen among the set of arity-
compatible nodes. This operator cannot be applied to the upper level node;

4. Permute: outgoing arcs of the target non-terminal node are randomly per-
muted and parameters are uniformly reset;

5. Replace : the target node is replaced by a randomly chosen node with the
same arity and its parameters are uniformly reset.

The only restriction in those operators is that the split operator cannot be
applied to the top level node, to avoid conflicting entry points for the evaluation
process. This feature ensures that all plans can be generated (in theory) from
DAG made of a single terminal: this is what will be used in the initial population.

6 Experimental Results

This section presents the experimental setup (software and evolution parameters)
along with two experiments. Each experiment relies on the use of one specific
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species of construction elements: Lego-like and Kapla-like3. Due to the type
of elements involved, BlindBuilder construction operator list is limited to the
Snap operator described in section 4. For Lego-like elements, the Snap operator
results in establishing a real physical connection while for Kapla-like elements,
it is only used to position the various elements (i.e. the resulting construction
may be destroyed because of gravity).

6.1 Experimental Setup

As said above, all individuals in the initial population are single-node DAGs,
for which the unique terminal is uniformly chosen among the set of element
templates.

The selection is a tournament selection (typically of size 7) based on a hier-
archical multi-criterion comparison operator that incorporates both the target
objective(s) and some parsimony pressure in a lexicographic way similar to that
proposed by [12]. Note that this is not a Pareto-based optimization (e.g., two
individuals are always comparable).

– Define the relative distance between two values a and b as |a−b|
max(a,b) ;

– Order the list of objectives from most to less important;
– Two individuals are said to be equivalent for a given objective if the relative

distance between their values for this objective is less than a given threshold
(typically 0.1);

– The comparison of two individuals is then lexicographic, i.e. individual x is
better than individual y if, for some objective rank i, x and y are equivalent
for objectives 1, . . . , i − 1, they are not equivalent for objective i, and the
value of x for objective i is larger than that of y.

In the following experiments, tournament size is set to 7 and population size
to 1000. The threshold for the comparison of objective values is set to 0.1. All
experiments were run 13 to 20 times. Each experiment took about 16 hours on
a PC with Intel Pentium 4 running at 3.6 GHz under Linux.

A few preliminary experiments (not shown here) showed that a Pareto ap-
proach (relying on NSGA-2 algorithm [3]) was slower the hierarchical approach
described above. Moreover, a standard generational GA evolution (i.e. 1000 off-
spring are generated at each generation and replace all parents) using tourna-
ment selection was observed to be more efficient than both (μ, lambda)-ES and
(μ + lambda)-ES, with μ = 15 or μ = 30 and λ = 7μ, the latter giving better
result than the former. Finally, a maximal size of 50 for a construction plan was
set to avoid uncontrolled code growth – but the limit was hardly ever reached.

The preliminary experiments also showed the relative importance of the vari-
ation operator replace: Indeed, this operator is much more conservative than the
others, and is mandatory to fine tune existing structures, while all other oper-
ators result in important changes in the resulting structure. As a consequence,

3 http://www.kapla.com
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the rate for the replace operator is set to 0.7 while all other operators have a
rate of 0.075 in the following experiments.

The BlindBuilder approach was implemented within Open-BEAGLE, a frame-
work for artificial evolution written in C ++ [5]. Newton Game Dynamics4, was
used in order to simulate and evaluate the resulting structure in a physical en-
vironment. All the experiments are in three dimensions.

6.2 The Pillar Experiment

The goal is to build the biggest possible structure using Lego-like elements (1x2,
2x2, 2x3, 2x4 and 2x6 bricks). Lego-like elements are characterized by physical
connections that hold them together. The objective functions to maximise are,
ordered by priority:

1. The volume: V =
∑

Vi, where Vi is the volume of ith atomic element i.
2. The compacity: C = V

Vfull
where Vfull is the volume of the convex hull of the

whole structure.
3. The parsimony: P = 50−S where S is the number of nodes of the construc-

tion plan (max. 50 elements).

Figures 3 and 4 shows evolution results and an example of obtained structure
when using only a 2x2 element. Results show that for this simple constrained
problem, maximum compacity is achieved very quickly. Moreover, optimal indi-
viduals are found with the smallest possible construction plan. Figures 5 and 6
shows the same experiment but with all 5-elements templates possible. The big-
ger and thus most appropriate element (2x6) is always used, even though the
optimal plan is not yet reached at the end of evolution (it may be reached if
evolution is carried on further). The two examples shown on Figure 6 are very
different construction plans, the latter being larger, but leading to a more com-
pact construction. In all experiments, reusability has been heavily exploited, as
can be observed in the sample plans of Figure 6.
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Fig. 3. Averge results for Pillar experiment using only the 2x2 Lego-element template

6.3 The Bridge Experiment

Kapla-like elements can be defined as Lego-like elements with no connections.
Thus, Kapla construction are much more unstable. Moreover, by changing the set
4 Freeware but not open-source, see http://www.newtondynamics.com/
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brick_2x2snapsnapsnapsnapsnap

Fig. 4. Example of best solution for the Pillar experiment using only the 2x2 Lego-
element template. Snap parameters not shown.
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Fig. 5. Average results for Pillar experiment using five possible Lego-element templates

brick_2x6snapsnapsnapsnapsnap

brick_2x6
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snap

snap
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Fig. 6. Examples of best solutions found for the Pillar experiment using five possible
Lego-element templates. Snap parameters not shown.

of possible values of the orientation parameter in the Snap construction operator,
the user can decide to go from “flat” structure (allowing a single value 0) to
square structures (allowing 0, 90, 180 and 270 degree orientations) to complex
3D structure (allowing any floating-point value). The goal of this experiment is
to build the longest horizontal structure with as few elements on the floor using
Kapla-like elements. The objective functions to maximise are:

1. The length, the horizontal length of the structure.
2. The grounding, n − f where n is the number of atomic elements of the

construction, and f the number of atomic elements that are in direct contact
with the floor.

3. The parsimony defined as in the Pillar experiment above.

Figure 7 show results of obtained individuals. Every runs succeeded in generat-
ing quite successful individuals, either by deeply optimizing one of the objective
function or making a compromise between the three objective functions. The
most striking results is that evolution has been able to build cantilever bridges
with arches, for which various examples are shown in figure 8. Each example
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Fig. 7. Results for the Bridge experiment
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Fig. 8. Examples of best solutions. Snap parameters not shown.

represent the best individual for a given run, as a matter of fact, there is a great
variability between runs.

6.4 Discussion

The results shown here are clearly competitive to that of the literature of evolu-
tionary design using Lego-like elements. The approach of [13] and BlindBuilder
both use a DAG-based representation of construction plans. However, the for-
mer lacks properties of modularity due to the intrinsic nature of the graph (node
are physical elements only, arcs are functions that connect these elements and
the language is limited to Lego elements). As a consequence, experiments are
limited to simple constructions (walls, pillars) and evolution is slower than what
has been shown here - for instance, construction size can only grow by adding
one element after another while a BlindBuilder construction can double in size
thanks to the addition of a single Snap operator at the top of a graph.

The experiments presented in [4] also demonstrated that bridges made of
Lego elements can be evolved according to the cantilever principle. However,
evolution took place in a two-dimensional environment (even though ”flat” 3D
models were shown). Moreover, the language used in [4] lacks reusability. On the
opposite, the BlindBuilder approach leads to comparable results in a true 3D
environment, with a more compact representation, thanks again to modularity
(here : ability to reuse arches and cantilever principle as soon as their definitions
are evolved in a construction plan).

One current limitation of our work is that for every run, the evolution process
failed to maintain diversity. As a results, best individuals are very different from
one run to another, but very similar within one given run. A current track under
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investigation is that of introducing island models so as to maintain candidate
solutions with similar performance but different structures within one single run.

7 Conclusion and Perspectives

This paper has introduced a new indirect encoding language for structures made
of small elements called BlindBuilder. It is designed to represent construction
plans, i.e. plans to iteratively build structures such as bridges or robots from
atomic elements. BlindBuilder shows interesting features such as compactness
and reusability thanks to hierarchy and modularity. Moreover, construction plans
make it possible to check for constructibility at each time steps of the evalua-
tion instead of having to evaluate the whole structure. To our knowledge, this
language is the first to endow all these properties in a single framework.

Alongside, a set of mutation operators have been defined to perform efficient
evolution. These kind of mutation operators explore the space of construction
plans and alter existing construction plans in such a way that resulting individ-
uals are well-formed BlindBuilder graphs.

The experiments showed that BlindBuilder features are exploited by the evo-
lution process and do achieve compact representation with reusable components.
Interesting results were achieved when building bridges with Kapla-like elements,
such as the rediscovery of arches and cantilever principle so as to minimise con-
tact points while maximising bridge length.

Future works on BlindBuilder include adding recursivity, though there is no
way to easily specify a terminating condition within a graph. We also intend to
refine the variation operators, especially the permute and replace operators, with
respect to the modification of the parameters: parameters are at the moment
modified uniformly, while more real-value-oriented mutations, such as Gaussian
mutation for the orientation in the case of Kapla elements, should be more
appropriate and should allow both more variety in the results and better fine-
tuning of the final solution. As for constructibility issues, recent works [14] have
shown that a promising way is to evaluate candidates as they are built, and not
just the resulting structure, which can be easily implemented using BlindBuilder
– but this will have some computational cost.
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Abstract. This paper investigates the use of genetic programming in
automatized synthesis of scheduling heuristics. The applied scheduling
technique is priority scheduling, where the next state of the system is
determined based on priority values of certain system elements. The
evolved solutions are compared with existing scheduling heuristics for
single machine dynamic problem and job shop scheduling with bottleneck
estimation.

1 Introduction

Scheduling is concerned with the allocation of scarce resources to activities with
the objective of optimizing one or more performance measures, which can as-
sume minimization of makespan, job tardiness, number of late jobs etc. Due
to inherent problem complexity and variability, a large number of scheduling
systems employ heuristic scheduling methods. Among many available heuristic
algorithms, the question arises of which heuristic to use in a particular environ-
ment, given different performance criteria and user requirements. The problem
of selecting the appropriate scheduling policy is an active area of research [1][2],
and a considerable effort is needed to choose or develop the algorithm best suited
to the problem at hand. A solution to this problem may be provided using ma-
chine learning, genetic programming in particular, to create problem specific
scheduling algorithms.

The combinatorial nature of most scheduling problems allows the use of search
based and enumerative techniques [1], such as genetic algorithms, branch and
bound etc. These methods usually offer good quality solutions, but at the cost
of a large amount of computational time needed to produce such a solution.
Furthermore, search based techniques are not applicable in dynamic or uncertain
conditions where there is need for frequent schedule modification or reaction to
changing system requirements. Scheduling with heuristic algorithms that define
only the next state of the system is therefore highly effective in most instances.

Genetic programming has rarely been employed in scheduling, mainly because
it is unpractical to use it to search the space of potential solutions (i.e. sched-
ules). It is, however, very suitable for the search of the space of algorithms that
provide solution to the problem. Previous work in this area of research includes
evolving scheduling policies for single machine unweighted tardiness problem
[3][4][5], single machine scheduling subject to breakdowns [6], classic job shop
tardiness scheduling [7][8] and airplane scheduling in air traffic control [9][10].

P. Collet et al. (Eds.): EuroGP 2006, LNCS 3905, pp. 73–84, 2006.
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In most cases the authors observe performance comparable to the human-made
algorithms. The scheduling procedure is however defined only implicitly for a
given scheduling environment. In this paper we structure the scheduling algo-
rithm in two components: a meta-algorithm which uses priority values to perform
scheduling and a priority function which defines values for different elements of
the system. This approach allows easier creation of various heuristics in an ar-
bitrary scheduling environment. To illustrate this methodology we address the
problem of scheduling with dynamic job arrivals, for which there is a possibility
of inserted idleness in resource usage. We also tackle the problem of bottleneck
identification in multiple machine environments and define an appropriate algo-
rithm structure for job shop scheduling. The obtained results can be used in a
more realistic weighted variant of the presented problems.

2 Priority Scheduling with Genetic Programming

A natural representation for the solution of a scheduling problem is a sequence of
activities to be performed on each of the machines. While this representation is
most suitable for use in combinatorial optimization, it presents only a solution to
the specific scheduling instance, which means that a new solution must be found
for different initial conditions. With genetic programming, we have the ability
to represent a solution for all the problem instances in a scheduling environment
with an algorithm that can be used to generate a schedule.

The scheduling method applied in this work is priority scheduling, in which
certain elements of the scheduling system are assigned priority values. The choice
of the next activity being run on a certain machine is based on their respective
priority values. This kind of scheduling algorithm is also called, variously, ’dis-
patching rule’, ’scheduling rule’ or just ’heuristic’. The term scheduling rule, in
a narrow sense, often represents only the priority function which assigns val-
ues to elements of the system (jobs in most cases). For instance, a scheduling
process may be described with the statement ’scheduling is performed using
SPT rule’. While in most cases the method of assignment of jobs on machines
based on priority values is trivial, in some environments it is not. This is par-
ticularly true in dynamic conditions where jobs arrive over time or may not be
run before some other job finishes. That is why a meta-algorithm must be de-
fined for each scheduling environment, dictating the way activities are scheduled
based on their priorities and possible system constraints. This meta-algorithm
encapsulates the priority function, but the same meta-algorithm may be used
with different priority functions and vice versa. The time complexity of priority
scheduling algorithms depends on the meta-algorithm, but it is in most cases neg-
ligible compared to search-based techniques, which allows the use of this method
in on-line scheduling [11] and dynamic conditions (all heuristics presented here
provide a solution for several hundred instances in less than a second).

The described structure of the scheduling algorithm allows modular develop-
ment and the possibility of iterative refinement, which is particularly suitable
for machine learning methods. In this work the meta-algorithm part is defined
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manually for a specific scheduling environment, such as dynamic one machine or
job shop. The priority function is evolved with genetic programming using appro-
priate functional and data structures. This way, using the same meta-algorithm,
different scheduling algorithms best suited for the current criteria can be devised.
The task of genetic programming is to find such a priority function which would
yield the best results considering given meta-algorithm and user requirements.

3 Single Machine Dynamic Scheduling

Problem Statement. In a single machine environment, a number n of jobs Jj

are processed on a single resource. In a static problem each job is available at time
zero, whereas in a dynamic problem each job has a release date rj . The processing
time of the job is pj and its due date is dj . The relative importance of a job
is denoted with its weight wj . In this environment the non-trivial optimization
criteria include weighted tardiness and weighted number of late jobs, which are
defined as follows: if Cj denotes the finishing time of job j, the job tardiness Tj

is defined as
Tj = max {Cj − dj , 0} . (1)

Lateness of a job Uj is taken to be 1 if a job is late, i.e. if its tardiness is greater
than zero, and 0 otherwise. Weighted tardiness for a set of jobs is defined as

Tw =
∑

j
wjTj (2)

and weighted number of late jobs as

Uw =
∑

j
wjUj . (3)

In the evaluation of scheduling heuristics we use a large number of test cases
with different number of jobs, job durations and weights. In order for all the test
cases to have a similar influence to the overall quality estimate of an algorithm,
we define normalized criteria for each test case. Normalized weighted tardiness
is defined as

Tw =

n∑
j=1

wjTj

n · w̄ · p̄
, (4)

and normalized number of late jobs as

Uw =

n∑
j=1

wjUj

n · w̄ , (5)

where n represents the number of jobs in a test case, w̄ the average weight and p̄
the average duration of all jobs. The average duration is not included in weighted
number of late jobs because that criteria does not include any quantity of time
dependent on job’s processing time. The total quality estimate of an algorithm
is expressed as the sum of normalized criteria over all the test cases.
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Scheduling Heuristics. In a dynamic environment the scheduler can use algo-
rithms designed for a static environment, but two things need to be defined for
those heuristics: the first is the subset of the jobs to be taken into consideration
for scheduling, since some jobs may arrive in some future moment in time. The
second issue is the method of evaluation of jobs which have not yet arrived, i.e.
the question should the priority function for those jobs be different and in what
way. This can be resolved in the following ways:

1. no inserted idleness - we only consider jobs which are immediately available;
2. inserted idleness - waiting for a job is allowed and waiting time is added to

job’s processing time in priority calculation;
3. inserted idleness with arbitrary priority - waiting is allowed but the priority

function must be defined so it takes waiting time into account.

When using existing heuristics for comparison, we apply the second approach
where necessary, i.e. if priority function does not take job’s release date into
account. The genetic programming, on the other hand, is coupled with the third
approach, as it has the ability to learn and make use of waiting time information
on itself. Scheduling heuristics that presume all the jobs are available are modi-
fied so that the processing time of a job includes job’s time till arrival (waiting
time), denoted with

wtj = max {rj − time, 0} . (6)

Thus, if an algorithm uses the processing time of a job, that time is increased
by wtj of the job. This modification is not necessary for algorithms that are
specifically designed for dynamic conditions, i.e. which already include release
date information in priority calculation. It can be shown that, for any regular
scheduling criteria [12], a job should not be scheduled if the waiting time for that
job is longer than the processing time of the shortest of all currently available
unscheduled jobs. In other words, we may only consider jobs j for which

wtj ≤ min
i

{pi} , ∀i : ri ≤ time . (7)

This approach may be illustrated with the following meta-algorithm using an
arbitrary priority function:

while there are unscheduled jobs do
wait until machine is ready;
pMIN = the duration of the shortest available job;
calculate priorities of all jobs with wtj < pMIN ;
schedule job with best priority;

end while

In the above algorithm, ‘best’ priority may be defined as the one with the great-
est or the lowest value, which is purely a matter of definition. For purposes of
efficiency comparison we used the following heuristics: weighted shortest pro-
cessing time (WSPT), earliest due date (EDD), weighted Montagne heuristic
[12] (MON), Rachamadugu & Morton heuristic [13] (RM) and X-dispatch bot-
tleneck dynamics heuristic [12] (XD). Each heuristic is defined with its priority
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function which is used as described in the above meta-algorithm. All except the
XD heuristic, which is the only one designed for dynamic job arrivals, are mod-
ified to include job waiting time; WSPT heuristic, for instance, has the priority
function

πj = wj/(pj + wtj) . (8)

Test Cases. Each scheduling instance is defined with the following parameters:
the number of jobs, their processing times, due dates, release dates and weights.
Job durations may take integer values between 1 and 100 and their weights values
between 0.01 and 1 in steps of 0.01. The values of processing times are generated
using uniform, normal and quasi-bimodal probability distributions among the
different test cases. Release times are chosen randomly in the interval

rj ∈
[
0,

1
2

n∑
i=1

pi

]
. (9)

Job due dates are generated using two parameters: T as due date tightness
and R as due date range, which both assume values in interval [0,1]. For each
test case due dates are generated with uniform distribution in the interval

dj ∈
[
rj +

(
n∑

i=1

pi − rj

)
· (1 − T − R/2) , rj +

(
n∑

i=1

pi − rj

)
· (1 − T + R/2)

]
.

(10)

Due date tightness parameter represents the expected percentage of late jobs
and due date range defines the dispersion of due date values. The numbers of jobs
in test cases are 12, 25, 50 and 100 whereas parameters T and R assume values
of 0.2, 0.4, 0.6, 0.8 and 1 in various combinations. We define 100 scheduling
instances that are used as fitness cases in learning process and additional 600
instances that are used for evaluation purposes only.

Scheduling with Genetic Programming. The task of genetic program is to
find a priority function which is best suited for use with given criteria and meta-
algorithm. After the learning process, the best found priority function is tested
on evaluation test cases. The solution of genetic programming is represented with
a single tree that embodies the priority function. The choice of functions and ter-
minals is a crucial step in the overall optimization process since they must allow
the program to use all the relevant information and form an efficient solution.
The complete set of primitives used as tree elements is presented in Table 1.

Weighted Tardiness Problem. The described genetic programming process
can be used for optimization of an arbitrary scheduling criteria, but the most
common one for single machine environment is weighted tardiness. Fitness value
of a genetic program solution is defined as sum of normalized criteria values,
defined as (4), over all 100 learning test cases (smaller values are better). The
genetic programming parameters are given in Table 2 (we did not perform any
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Table 1. The function and terminal set for dynamic one machine problem

Function name Definition
ADD, SUB, MUL binary addition, subtraction and multiplication operators

DIV protected division: DIV (a, b) =
1, if |b| < 0.000001

a/b, otherwise
POS POS (a) = max {a, 0}
Terminal name Definition
pt processing time of a job (pj)
dd due date (dj)
w weight (wj)
N total number of jobs
Nr number of remaining (unscheduled) jobs
SP sum of processing times of all jobs
SPr sum of processing times of remaining jobs
SD sum of due dates of all jobs
SL positive slack, max {dj − pj − time, 0}
AR job arrival time (waiting time), max {rj − time, 0}

Table 2. The genetic programming parameters

Parameter / operator Value / description
population size 10000
selection steady-state, tournament of size 3
stopping criteria maximum number of generations (300) or maximum

number of consecutive generations without best solution
improvement (50)

crossover 85% probability, standard crossover
mutation standard, swap and shrink mutation, 3% probability for

each
reproduction 5% probability
initialization ramped half-and-half, max. depth of 5

additional parameter tuning to show that even with ’common’ parameter values
good results could be obtained).

We conducted 20 runs using the defined meta-algorithm and achieved mean
best result of 331.0 with standard deviation σ = 1.92. The overall solution was
chosen among best solutions of each run as the one with the best performance
on the unseen set of 600 evaluation test cases. The results in the form of total
normalized criteria values are presented in the lefthand side of Table 3 (‘Twt’
denotes weighted tardiness and ‘Uwt’ weighted number of tardy jobs). Apart
from total criteria values, the performance measure for each heuristic may also
be described as the percentage of test cases in which the heuristic achieved the
best known result (or the result that is not worse than any other heuristic). This
value can be denoted as the dominance percentage, and comparative results for
all the heuristics are shown in the righthand side of Table 3.
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Table 3. Normalized criteria and dominance percentages for one machine problem

Normalized criteria Dominance percentage
Twt Uwt Twt Uwt

GP 330.6 188.8 80 % 49 %
XD 389.7 194.1 21 % 30 %
RM 451.7 210.6 9 % 17 %
MON 623.1 216.7 3 % 8 %
WSPT 845.0 201.6 0 % 21 %
EDD 1280.9 440.0 14 % 13 %

It can be perceived that the evolved scheduling heuristic achieved the best
overall performance for both scheduling criteria. In addition, we performed ex-
periments with weighted number of tardy jobs as the fitness function and, as
expected, the evolved algorithm’s efficiency for that criteria was improved. At
the same time, the performance in regard of weighted tardiness decreased sig-
nificantly, so we may conclude that optimization with weighted tardiness as
performance criteria pays off better considering overall algorithm quality.

4 Job Shop Scheduling

Problem Statement. Job shop scheduling includes running n jobs on m ma-
chines where each job has m operations and each operation is to be processed on
a specific machine (more general model involves arbitrary number of operations
for any job). Duration of one operation of job j on machine i is denoted with
pij . Every machine and job is considered to be available for processing from the
beginning. The operations of each job have to be completed in a specific sequence
which differs from job to job. In addition to weighted tardiness and number of
tardy jobs, another non-trivial and widely used criteria are weighted flowtime
and makespan. Normalized weighted flowtime of a set of jobs is defined as

Fw =

n∑
j=1

wjFj

n · w̄ · p̄ , (11)

where Fj equals to the completion time of the last operation of a job, Cj . Nor-
malized makespan is similarly defined as

Cmax =
max {Cj}

n · p̄
. (12)

Although the jobs are considered to be available from the time zero, scheduling
on a given machine is inherently dynamic because an operation may only be
ready at some time in the future (after the completion of the job’s previous
operation). We therefore modify the processing time of an operation as in the
single machine dynamic problem (inserted idleness approach).
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Scheduling Heuristics. Job shop priority scheduling involves determining the
next operation to be processed on a given machine. The scheduling on a machine
may only occur if the machine is available and if either of the following is true:
there are operations ready to be processed on that machine or there are opera-
tions which will be ready for processing at a known time in future. The latter
situation occurs if the previous operation of a job has already started and we
know the time it will finish. This procedure can be described with the following
meta-algorithm:

while there are unprocessed operations do
wait for a machine with pending operations;
calculate priorities of all pending operations;
schedule best priority operation;
update machine and next job’s operation ready time;

end while

The choice of operations considered for scheduling is still restricted to those
operations whose waiting time (6) is smaller than the duration of the shortest
available operation. In efficiency comparison we used the following job shop
heuristics: WSPT, processing time to the total work remaining (WSPT/TWKR),
weighted total work remaining (WTWKR), dynamic slack per remaining process
time (SLACK/TWKR), COVERT (cost over time) and Rachamadugu & Morton
job shop heuristic (RM). Each heuristic is described with its priority function;
detailed descriptions of the listed heuristics can be found in [14] and [12].

Test Cases. The operations processing times and job weights are generated
randomly as for the one machine environment. Job numbers are 12, 25, 50 and
100 whereas the number of machines takes values of 5, 10, 15 or 20 in a test
case. The expected total duration of all the jobs is defined as

p̂ =
1
m

n∑
j=1

m∑
i=1

pij , (13)

and job due dates are generated randomly with parameters T and R in the
following interval:

dj ∈ [p̂ (1 − T − R/2) , p̂ (1 − T + R/2)] . (14)

We define 160 test cases for learning and 320 evaluation test cases, in addition
to 80 instances taken from [15], used for evaluation only.

Scheduling with Genetic Programming. As in the single machine case, the
solution of genetic programming is a single tree which represents the priority
function to be used with defined meta-algorithm. The choice of functions is
similar to the previous implementation, but the terminals are radically different,
because they must include different information of the system state. The set of
functions and terminals is presented in Table 4.
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Table 4. The function and terminal set for job shop problem

Function name Definition
ADD, SUB, MUL,
DIV, POS

as in Table 1

SQR protected unary square root: SQR(a) =
1, ifa < 0√
a, otherwise

IFGT comparison operator: IFGT (a, b, c, d) =
c, ifa > b

d, otherwise
Terminal name Definition
pt operation processing time (pij)
dd job due date (dj)
w job weight (wj)
CLK current time
AR operation waiting time: max {rij − time, 0} , where rij denotes

finishing time of the previous operation (before machine i)
NOPr number of remaining job operations
TWK total processing time of all operations of a job
TWKr processing time of remaining operations of a job
PTav average duration of all the operations on a given machine
HTR head time ratio: the ratio of the total time the job has been in

the system and total duration of job’s completed operations

Table 5. Normalized criteria and dominance percentages for job shop problem

Normalized criteria Dominance percentage
Twt Uwt Fwt Cmax Twt Uwt Fwt Cmax

GP 146.1 70.9 105.8 133.5 88 % 12 % 73 % 0 %
RM 158.0 68.5 110.0 121.6 5 % 14 % 1 % 5 %
COVERT 179.8 73.4 119.0 118.7 0 % 11 % 0 % 31 %
WSPT 161.6 69.3 107.9 121.7 2 % 13 % 16 % 5 %
SPT/TWKR 195.5 74.6 123.2 118.9 0 % 11 % 0 % 35 %
WTWKR 166.1 68.4 109.0 127.8 4 % 17 % 10 % 4 %
SL/TWKR 225.5 77.0 134.3 123.7 0 % 11 % 0 % 14 %
EDD 206.1 76.5 123.7 128.0 1 % 11 % 0 % 6 %

We conducted 20 experiments optimizing weighted tardiness criteria with
mean best value over the runs 147.5 and σ = 1.07. The best solution was
compared with the existing scheduling heuristics on the evaluation set of 400
(320 + 80) test cases. The results in normalized criteria values and dominance
percentages are shown in Table 5.

Scheduling with Adaptive Heuristic. It has already been shown [8] that
the identification of the bottleneck resource, i.e. the resource with substantially
higher load, may improve the scheduling process. As it is generally not known
in advance which machine could become a bottleneck, we may try and develop a
heuristic to determine such resource on line. We propose a genetic programming
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Table 6. The terminal set for decision tree

Terminal name Definition
MTWK total processing time of all operations on a machine
MTWKr processing time of all remaining operations on a machine
MTWKav average duration of all operations on all machines
MNOPr number of remaining operations on a machine
MNOPw number of waiting operations on a machine
MUTL utilization: the ratio of duration of all processed operations on a

machine and total elapsed time

approach where there are two distinctive agents, or scheduling heuristics, and
GP is responsible for evolving the rule to decide which heuristic is to be ap-
plied on a given machine. The solution of genetic programming consists of three
parts (represented as trees): the first part, or the decision tree, determines which
heuristic should be used at a given moment. The other two parts (scheduling
trees) are applied depending on the result of the decision tree. Scheduling trees
use the same primitives as in Table 4, but the decision tree should be able to
recognize increased load on a machine with appropriate set of terminals. The
terminals which can be used in the decision tree are presented in Table 6 (the
functions are the same in all trees).

As the result of the decision tree is a numeric value, we have to interpret it
in some way and define the scheduling process. This procedure can be described
with the following meta-algorithm:

for each machine i do
calculate decision tree value (Pi);

end for
while there are unprocessed operations do

wait for a machine with pending operations;
Pi = decision tree value for current machine;
if Pi > Pm, ∀m then

calculate priorities using the second tree;
else

calculate priorities using the first tree;
end if
schedule best priority operation;
update machine and next job’s operation ready time;

end while

Using the above adaptive structure, we conducted 20 runs with the same evo-
lution parameters and achieved mean best result of 146.05 and σ = 1.25. The
overall best solution (denoted GP-3) is compared with existing scheduling al-
gorithms and with single tree heuristic (denoted GP). The first row of Table 7
shows the results in comparison with existing heuristics and the bottom two rows
compare the described methods (we include only GP values for brevity since the
other heuristics are unchanged). The t -test on the results of the methods rejects
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Table 7. Performance of single tree (GP) and multiple tree solution (GP-3)

Normalized criteria Dominance percentage
Twt Uwt Fwt Cmax Twt Uwt Fwt Cmax

GP-3 143.8 67.2 104.5 132.9 94 % 17 % 86 % 0 %
GP 146.1 70.9 105.8 133.5 31 % 11 % 24 % 1 %
GP-3 143.8 67.2 104.5 132.9 64 % 17 % 64 % 0 %

the null hypothesis with t = 1.89 and p < 0.067 for normalized criteria and with
t = 4.08 and p < 3.34 × 10−3 for dominance percentages (when compared to
existing heuristics). The difference between the two algorithms in terms of abso-
lute criteria values is not great, which can in part be attributed to the relative
proximity to the optimal solution. On the other hand, the relative dominance of
the multiple tree algorithm is much greater, as it is able to find non-dominated
solution in a majority of problem instances.

5 Conclusion

This paper shows genetic programming can be used to build scheduling algo-
rithms whose performance is measurable with human-made heuristics for a spe-
cific scheduling environment. We addressed the issue of dynamic single machine
scheduling for which a suitable meta-algorithm and appropriate data structures
are defined. Additionally, a multiple tree adaptive heuristic is proposed for job
shop scheduling problem, where decision tree is used to distinguish between re-
sources based on their load characteristics. The results are promising, as for
given problems the evolved heuristics exhibit better performance than existing
scheduling methods. The presented methodology can be particularly useful in
scheduling environments where there are no adequate algorithms and could al-
leviate the design of an appropriate scheduling procedure.
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84 D. Jakobović and L. Budin

6. Yin, W.J., Liu, M., Wu, C.: Learning single-machine scheduling heuristics subject
to machine breakdowns with genetic programming. In: Proceedings of the 2003
Congress on Evolutionary Computation CEC2003, IEEE Press (2003) 1050

7. Atlan, B.L., Polack, J.: Learning distributed reactive strategies by genetic pro-
gramming for the general job shop problem. In: Proceedings 7th annual Florida
Artificial Intelligence Research Symposium, IEEE, IEEE Press (1994)

8. Miyashita, K.: Job-shop scheduling with gp. In: Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO-2000), Morgan Kaufmann
(2000) 505

9. Cheng, V., Crawford, L., Menon, P.: Air traffic control using genetic search tech-
niques. In: IEEE International Conference on Control Applications, Hawai’i, IEEE
(1999)

10. Hansen, J.V.: Genetic search methods in air traffic control. Computers and Oper-
ations Research 31(3) (2004) 445

11. Pinedo, M.: Offline deterministic scheduling, stochastic scheduling, and online
deterministic scheduling: A comparative overview. In Leung, J.Y.T., ed.: Handbook
of Scheduling. Chapman & Hall/CRC (2004)

12. Morton, T.E., Pentico, D.W.: Heuristic Scheduling Systems. John Wiley & Sons,
Inc. (1993)

13. Mohan, R., Rachamadugu, V., Morton, T.E.: Myopic heuristics for the weighted
tardiness problem on identical parallel machines. Technical report, The Robotics
Institute, Carnegie-Mellon University (1983)

14. Chang, Y.L., Sueyoshi, T., Sullivan, R.: Ranking dispatching rules by data envel-
opment analysis in a job shop environment. IIE Transactions 28(8) (1996) 631

15. Taillard, E.: Scheduling instances. “http://ina.eivd.ch/Collaborateurs/etd/
problemes.dir/ordonnancement.dir/ordonnancement.html” (2003)



 

P. Collet et al. (Eds.): EuroGP 2006, LNCS 3905, pp. 85 – 96, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Emergent Generality of Adapted Locomotion Gaits of 
Simulated Snake-Like Robot 

Ivan Tanev1,2 

1 Department of Information Systems Design, Doshisha University,  
1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0321, Japan 

2 ATR Network Informatics Laboratories, 
2-2-2 Hikaridai, “Keihanna Science City”, Kyoto 619-0288, Japan 

itanev@mail.doshisha.ac.jp 

Abstract. In this work we consider the generality of locomotion gaits of simu-
lated snake-like robot (Snakebot), adapted (via genetic programming, GP) to 
both (i) a challenging terrain and (ii) a partial mechanical damage. Discussing 
the emergence of common traits in these gaits, we elaborate on the strong corre-
lation between their respective genotypes. We experimentally verify the gener-
ality of the adapted gaits in different “unexpected” environmental conditions 
and for various mechanical failures of the Snakebots. From an engineering 
standpoint, we suppose that in response to an eventual degradation of velocity, 
the Snakebot might activate a general locomotion gait, without the need to di-
agnose and treat the concrete underlying reason for such degradation. We view 
this work as a step towards building real Snakebots, which are able to perform 
robustly in difficult environment. 

Keywords: Genetic programming, generality, snake-like robot, locomotion. 

1   Introduction 

Wheelless, limbless snake-like robots (Snakebots) feature potential robustness charac-
teristics beyond the capabilities of most wheeled and legged vehicles – ability to trav-
erse terrain that would pose problems for traditional wheeled or legged robots, and 
insignificant performance degradation when partial damage is inflicted. The useful 
features of Snakebots (smaller size of the cross-sectional areas, stability, traction, 
redundancy, and complete sealing of the internal mechanisms [2, 3]) open up several 
critical applications in exploration, reconnaissance, medicine and inspection. How-
ever, compared to the wheeled and legged vehicles, Snakebots feature (i) more diffi-
cult control of locomotion gaits and (ii) inferior speed characteristics. Focusing on 
these drawbacks, we intend to address the following challenge: how to develop con-
trol sequences of Snakebot’s actuators, which allow for achieving the fastest possible 
speed of locomotion.  

For many tasks and robot morphologies, it might be seen as a natural approach to 
handcraft the locomotion control code by applying various theoretical approaches [12, 
18].  However, handcrafting might not be feasible for developing the control code of 
real Snakebot due to its morphological complexity and the need of prompt adaptation 
under degraded mechanical abilities or unanticipated environmental conditions [4, 6, 
10, 13, 14, 17]. The proposed approach of employing genetic programming (GP) 
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implies that the code, which controls the locomotion of Snakebot is automatically 
designed by a computer system via simulated evolution through a selection and sur-
vival of the fittest in a way similar to the natural evolution of species [7].  

However, it is recognized that the lack of generalization (or robustness) of the 
evolved solutions is among the most serious disadvantages of the evolutionary ap-
proaches, including GP [5, 8]. The methods that address the challenge of dealing with 
the performance of the evolved solutions in changeable fitness landscapes in evolu-
tionary robotics usually consider an online adaptation to the changes through either 
evolution or learning [4, 10, 14]. Although these techniques do really provide a feasi-
ble way to address the problem of the brittleness of the evolved solutions, they usually 
require a series of trials in which the incrementally adapting artifact interacts with the 
surrounding environment. These trials, conducted online, might be costly, time- and 
energy consuming, and even dangerous for the artifact itself. 

In our previous work [14] we discussed the feasibility of applying GP to design 
fast locomotion of the Snakebot and investigated the beneficial effects of learning 
mutation strategies on the efficiency of its evolution and adaptation [16]. In this work 
our objective is to explore the generality (analogy) of the gaits, emerged as a result of 
adaptation of the Snakebot to two distinct changes in the fitness landscape which, in 
the real-world, are most likely to cause a performance degradation of the Snakebot:  
(i) a challenging terrain and (ii) a partial damage. Our work is motivated by the an-
ticipated engineering implications of the eventual analogy of the gaits adapted to 
these two situations: we assume that in response to an eventual degradation of veloc-
ity, the Snakebot might activate some general locomotion gaits without the need to 
diagnose and treat the concrete underlying reason for such degradation (e.g., a chal-
lenging terrain or degraded Snakebots’ abilities). 

The remainder of this document is organized as follows. Section 2 emphasizes the 
main features of the GP proposed for evolution of locomotion gaits of the simulated 
Snakebot. Section 3 presents empirical results of emergent properties and the general-
ity of the evolved and adapted locomotion gaits. Section 4 draws a conclusion. 

2   GP for Automatic Design of Locomotion Gaits of Snakebot 

2.1   Representation of Snakebot 

Snakebot is simulated as a set of identical spherical morphological segments (“verte-
brae”), linked together via universal joints. All joints feature identical (finite) angle 
limits and each joint has two attached actuators (“muscles”). In the initial, standstill 
position of Snakebot the rotation axes of the actuators are oriented vertically (vertical 
actuator) and horizontally (horizontal actuator) and perform rotation of the joint in the 
horizontal and vertical planes respectively. Considering the representation of Snake-
bot, the task of designing the fastest locomotion can be rephrased as developing tem-
poral patterns of desired turning angles of horizontal and vertical actuators of each 
segment, that result in fastest overall locomotion of Snakebot. The proposed represen-
tation of Snakebot as a homogeneous system significantly reduces the search space 
size of GP, and consequently, allows for achieving a favorable scalability of GP.  
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2.2   Algorithmic Paradigm 

GP. GP [7] is a domain-independent problem-solving approach in which a population 
of computer programs (individuals’ genotypes) is evolved to solve problems. The 
simulated evolution in GP is based on the Darwinian principle of reproduction and 
survival of the fittest. The fitness of each individual is based on the quality with 
which the phenotype of the simulated individual is performing in a given environment. 

Function Set and Terminal Set. In applying GP to evolution of Snakebot, the geno-
type is associated with two algebraic expressions, which represent the temporal pat-
terns of desired turning angles of both the horizontal and vertical actuators of each 
morphological segment. Because locomotion gaits, by definition, are periodical, we 
include the trigonometric functions sin and cos in the GP function set in addition to 
the basic algebraic functions. From another perspective, these functions allow to 
mimic (to some extend) the functionality of central pattern generator (CPG) in the 
central nervous system, which is believed to be necessary and sufficient for the gen-
eration of rhythmic patterns of activities of animals [9]. The approach of employing 
CPG for developing the locomotion gaits of the Snakebot would be based on an itera-
tive tuning of the parameters of CPG (e.g., the common frequency across the coupled 
oscillators, the phase-relationship between the oscillators, and the amplitude of each 
of oscillations). The proposed approach of applying GP for evolution of Snakebot 
shares some of the features of CPG such as the open-loop control scheme and the 
incorporation of coupled oscillators. Conversely to the CPG however, the proposed 
method incorporates too little domain-specific knowledge about the task. As argued in 
[14], the flexibility of GP, resulting from not considering all the domain-specific 
constrains, can potentially yield an optimal solution with the following (typically 
uncommon for CPG) properties: (i) the oscillations of segments might result from 
arbitrary superposition of several oscillations with different frequencies, (ii) the rela-
tionship between the oscillators in the segments of Snakebot is not necessarily a sim-
ple phase relationship, and (iii) the phase relationship between the oscillators in the 
morphological segments might vary along the body of Snakebot, rather than being 
fixed. These features can be achieved by incorporating the terminal symbol  
segment_ID (a unique index of the segments of Snakebot), which allows GP to 
discover how to specialize (by phase, amplitude, frequency etc.) the temporal motion 
patterns of actuators of each of the segments of the Snakebot. In addition, the terminal 
symbols of GP include the variable time and two constants: Pi, and a random con-
stant within the range [0, 2]. The introduction of variable time reflects our objective 
to develop temporal patterns of turning angles of actuators. The main parameters of 
the GP are summarized in Table 1.  

Fitness Evaluation. The fitness function is based on the velocity of Snakebot, esti-
mated from the distance, which the center of the mass of Snakebot travels during the 
trial. Fitness of 100 (the one of termination criteria shown in Table 1) is equivalent to 
a velocity, which displaced Snakebot a distance equal to twice its length. 

Representation of Genotype. Inspired by its flexibility, and the recently emerged 
widespread adoption of document object model (DOM) and extensible markup lan-
guage (XML), we represent evolved genotypes of simulated Snakebot as DOM-parse 
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Table 1. Main parameters of GP 

Category Value 

Function set {sin, cos, nop, +, -, *, /} 
Terminal set {time, segment_ID, Pi, random constant} 
Population size 200 individuals 
Selection  Binary tournament, selection ratio 0.1, reproduction ratio 0.9 
Elitism Best 4 individuals 
Mutation Random subtree mutation, ratio 0.01 
Fitness Velocity of simulated Snakebot during the trial 
Trial interval 180 time steps, each time step account for 50ms of “real” time  

Termination criterion 
(Fitness >100) or (Generations>30) 
 or (no improvement of fitness for 16 generations) 

 

trees featuring equivalent flat XML-text in a way as originally implemented in [15]. 
Both (i) the calculation of the desired turning angles during fitness evaluation and (ii) 
the genetic operations are performed on DOM-parse trees using API of off-the shelf 
DOM-parser. 

Genetic Operations. Binary tournament selection is employed – a robust, commonly 
used selection mechanism, which has proved to be efficient and simple to code. 
Crossover operation is defined in a strongly typed way in that only the DOM-nodes 
(and corresponding DOM-subtrees) of the same data type (i.e. labeled with the same 
tag) from parents can be swapped. The sub-tree mutation is allowed in strongly typed 
way in that a random node in genetic program is replaced by syntactically correct 
 

Table 2. ODE-related parameters of simulated Snakebot 

Parameter Value 
Number of phenotypic segments in snake 15 
Model and size of the segment Sphere with radius 3cm 
Density of the segment, g/cm3  0.9 
Mass of the segment, g  100 
Type of joint between segments Universal 

Number of actuators per joint 
2 (horizontal – along X-axis and 
vertical – along Z-axis of the world) 

Operational mode of actuators dAMotorEuler 
Actuators stops (angular limits), degrees ±50 
Max torque of actuators, gcm 12000 
Max angular velocity of actuators,  degrees/s 100 
Coefficient of friction between segments and sur-
face (μ) 0.5 

Friction model 
Pyramid approximation of 
Coloumb friction model 

Sampling frequency of simulation, Hz 20 Hz 
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sub-tree. The mutation routine refers to the data type of currently altered node and 
applies randomly chosen rule from the set of applicable rewriting rules as defined in 
the grammar of GP.  

ODE. We have chosen Open Dynamics Engine (ODE) [11] to provide a realistic 
simulation of physics in applying forces to phenotypic segments of Snakebot.  ODE is 
a free, industrial quality software library for simulating articulated rigid body dynam-
ics. It is fast, flexible and robust, and it has built-in collision detection. The ODE-
related parameters of simulated Snakebot are summarized in Table 2. 

3   Empirical Results 

In this section we present the experimental results verifying the feasibility of applying 
GP for evolution of the fast locomotion gaits of Snakebot. In addition, we investigate 
the emergent properties of (i) the fastest locomotion gaits, evolved in unconstrained 
environmental conditions and (ii) the robust locomotion gaits evolved in challenging 
environments. The section also discusses (iii) the gradual adaptation of the locomo-
tion gaits to degraded mechanical abilities of Snakebot. The abilities of Snakebot to 
address these challenges are relevant for the success of the anticipated real-world 
exploration, reconnaissance, medicine- and inspection missions.   

In all of the considered cases, the fitness of Snakebot reflects the basic objective 
(i.e. what is required to be achieved) of Snakebot in these missions, namely, to be able 
to move fast regardless of environmental challenges or mechanical failures. The re-
sults of experiments shown in this section illustrate the ability of evolving Snakebot to 
learn how (e.g. by discovering beneficial locomotion traits) to accomplish the required 
objective without being explicitly taught about the means to do so. Such know-how 
acquired by Snakebot automatically and autonomously can be viewed as a demonstra-
tion of an emergent intelligence in that the task-specific knowledge of how to accom-
plish the task emerges in the Snakebot from the interaction between the problem 
solver and the fitness function [1]. 

3.1   Emergent Properties of Evolved Fastest Locomotion Gaits in Unconstrained 
Environment 

Figure 1 shows the fitness convergence characteristic of 10 independent runs of GP 
(Figure 1a) and sample snapshots of evolved best-of-run locomotion gaits (Figures 1b 
and 1c) when fitness is measured in any direction in a smooth and unconstrained 
environment. Despite that fitness is measured as a velocity in any direction, sidewind-
ing locomotion (i.e., locomotion predominantly perpendicular to the long axis of 
Snakebot) emerged in all 10 independent runs of GP, suggesting that it provides supe-
rior speed characteristics for the given morphology of the Snakebot.  The evolved 
locomotion gait is quite similar to the locomotion of the natural snake Crotalus cer-
astes, or “Sidewinder”. In the proposed representation of Snakebot, similarly to the 
natural snake, no anisotropic (directional) friction between the morphological  
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segments and the surface is considered. It is easy to eventually simulate (and design) 
segments featuring anisotropic friction with the surface, e.g. by attaching simple pas-
sive wheels [3]. However, this would feature the following serious drawbacks:  
(i) wheels, attached to the morphological segments of Snakebot are mainly effective 
in two-dimensional locomotion gaits, when neither the fastest gaits in a smooth envi-
ronments nor the adaptive gaits in challenging environments (e.g., with obstacles) or 
partial damage are necessarily two-dimensional, (ii) wheels may compromise the 
intended generality (robustness) of Snakebot because they can be trapped, locked or 
rendered useless easily in challenging environments (rugged terrain, obstacles, shift-
ing surfaces, etc.), and (iii) wheels potentially reduce the application areas of the 
Snakebot because their engineering design implies a lack of complete sealing of all 
mechanisms of Snakebot.  
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Fig. 1. Evolution of locomotion gaits for cases where fitness is measured as a velocity in any 
direction – the fitness convergence characteristics of 10 independent runs (a), the probability of 
success (b), and snapshots of frontal view (c, top) and view from above (c, bottom) of sample 
evolved best-of-run sidewinding locomotion gaits. The dark trailing circles in the view from 
above depict the trajectory of the center of the mass of Snakebot. 

 

The genotype of sample best-of-run genetic program is shown in Figure 2. The dy-
namics of evolved turning angles of actuators in sidewinding result in characteristic 
circular motion pattern of segments around the center of the mass as shown in  
Figure 3a. The circular motion pattern of the segments and the characteristic track on 
the ground as a series of diagonal lines (as illustrated in Figure 3b) suggest that during 
sidewinding the shape of Snakebot takes the form of a rolling helix (Figure 3c).  
Figure 3 demonstrates that the simulated evolution of locomotion via GP is able to 
invent the improvised “cylinder” of the sidewinding Snakebot to achieve fast  
locomotion.  

GenH = (sin(((sin(−8))*(segment id − time)) + (3*time)))/(sin(−8));

GenV = sin(ADF), where ADF = GenH
 

Fig. 2. Normalized algebraic expressions of the genotype of sample best-of-run genetic pro-
gram: dynamics of turning angle of horizontal (GenH) and vertical (GenV) actuators  
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Fig. 3. Trajectory of the central segment (cs) around the center of mass (cm) of Snakebot for a 
sample evolved best-of-run sidewinding locomotion (a), traces of ground contacts (b), and 
Snakebot, wrapped around an imagined cylinder taking the form of a rolling helix 

3.2   Adaptation to Challenging Environment 

Adaptation in Nature is viewed as an ability of species to discover the best phenotypic 
(i.e. pertaining to biochemistry, morphology, physiology, and behavior) traits for 
survival in continuously changing fitness landscape. In our approach we employ GP 
for adaptation of Snakebot to changes in the fitness landscape caused by (i) challeng-
ing environment and (ii) partial damage to 1, 2, 4 and 8 (out of 15) morphological 
segments. The former case is discussed in this subsection, while the latter case is 
elaborated in the following subsection 3.3. In both cases of adaptation, GP is initial-
ized with a population comprising 20 best-of-run genetic programs, obtained from 10 
independent runs of evolution of Snakebot in unconstrained environment, plus addi-
tional 180 randomly created Snakebots. 

The challenging environment is modeled by the introduction of immobile obstacles 
comprising 40 small, randomly scattered boxes, a wall with height equal to the 0.5 
diameters of the cross-section of Snakebot, and a flight of 3 stairs, each with height 
equal to the 0.33 diameters of the cross-section of Snakebot. The results of adaptation 
of Snakebots, obtained over 10 independent runs reveal the poor initial performance 
of the Snakebots, obtained via evolution in unconstrained environment. Indeed, the 
fitness of these Snakebots immediately drops from the initial value of 100 in uncon-
strained environment to only 65 when Snakebots are first tested (at generation #0) on 
the challenging terrain. However, adapting to the new environment, the evolving 
Snakebots are able to discover robust locomotion gaits, which ultimately allow them 
to overcome the obstacles. The computational effort (required to reach fitness values 
of 100 with probability of success 0.9) of adaptation is about 20 generations. Snap-
shots illustrating the performance of sample best-of-run Snakebot initially evolved in 
unconstrained environment, before and after the adaptation to the challenging envi-
ronment are shown in Figure 4.  

The robust sidewinding gaits (Figure 5) feature an additional elevation of the body 
- the emergent know-how in the adapting Snakebot, relevant for negotiating the ob-
stacles faster. As shown in Figure 5d, the trajectory of the central segment around the 
center of the mass of sample adapted Snakebot is almost twice higher than before the 
adaptation, as depicted, both qualitatively and quantitatively in Figures 1c and 3a. 
Moreover, as Figure 5b and Figure 5c reveal, the robust locomotion gaits feature  
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Fig. 4. Snapshots illustrating the sidewinding Snakebot, initially evolved in unconstrained 
environment, before the adaptation – initial (a), intermediate (b and c) and final stages of the 
trial (d), and after the adaptation to challenging environment via GP - initial (e), intermediate 
(f) and final stages of the trial (g) 
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Fig. 5. Snapshots of a frontal view (a) and a view from the above (b and c) of sample sidewind-
ing Snakebots after the adaptation to challenging terrain 

higher winding angle of locomotion (more than 120°) yielding a longitudinally more 
compact sidewinding Snakebots. Again, as with the emergence of sidewinding, the 
result of the artificial evolution is analogous to the solution discovered by Nature – it 
is recognized that natural snakes also change the winding angle of the locomotion in 
order to adapt themselves to the various environmental conditions. 

3.3   Adaptation to Partial Damage 

The experiments on adaptation of sidewinding Snakebot to partial damage is con-
ducted over 10 independent runs for each case of partial damage to 1, 2, 4 and 8 (out 
of 15) segments. The damaged segments are evenly distributed along the body of 
Snakebot. Damage inflicted to a particular segment implies a complete loss of func-
tionality of both horizontal and vertical actuators of the corresponding joint. Experi-
mental results indicate that Snakebot quickly and completely recovers from damage to 
single segment attaining its previous velocity only in 7 generations. Snakebots also 
recovers to average of 100% of its previous velocity also in 12 generations in the case 
of 2 damaged segments. With 4 and 8 damaged segments the degree of recovery is 
92% (in 14 generations) and 72% (in 26 generations) respectively. The emergent 
properties of adapted sidewinding locomotion gaits are shown in Figure 6. 
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Fig. 6. The emergent properties of adapted sidewinding locomotion gaits: frontal view of the 
Snakebot before (a) and after the adaptation (b) to the damage of single segment demonstrates 
the additional elevation of the adapted Snakebot. The view of the Snakebot from the above 
reveals the emergent tendency of increasing the winding angle of locomotion in the way much 
similar to the adaptation to challenging environment (as shown in Figure 5b and 5c): Snakebot 
with 1 (c, d), 2 (e, f), 4 (g, h) and 8 (i, j) damaged segments before and after the adaptation, 
respectively.  

3.4   Genetic Similarity of Adapted Snakebots 

In order to investigate whether the analogy in the emergent properties of locomotion 
gaits result from similar genotypes, we analyzed the correlation between the frequen-
cies of occurrence of tree nodes in a particular context (i.e. the parent- and the  
descendant tree nodes) in the genetic representations of the three categories of Snake-
bots – (i) evolved in smooth unconstrained environment, (ii) adapted to challenging 
environment, and (ii) adapted to the degraded mechanical abilities – as elaborated 
earlier in Sections 3.1, 3.2 and 3.3 respectively. For each of these three categories of 
Snakebots we aggregated the frequencies of occurrence of tree nodes obtained from 
the genotypes of the 20 best-of-run Snakebots (from 10 independent runs of GP). The 
results are as follows: 

(i) The correlation between genotypes of the Snakebots evolved in smooth envi-
ronment and the Snakebots adapted to challenging environment is CS-C=0.34, 

(ii) The correlation between genotypes of the Snakebots evolved in smooth envi-
ronment and the Snakebots adapted to degraded mechanical abilities due to par-
tial damage is CS-D=0.32, and 

(iii) The correlation between genotypes of the Snakebots adapted to challenging 
environment and the Snakebots adapted to degraded mechanical abilities due to 
partial damage is CC-D=0.91. 

These results suggest that there is a little similarity between the genotypes of 
Snakebots adapted to both changes in the fitness landscape (i.e., due to challenging 
environment and partial damage) and the Snakebot evolved in smooth environment. 
We assume that this limited similarity (CS-C=0.34, and CS-D=0.32) is due to the shared 
genotypic fragments, which are relevant for the very ability of Snakebot to move, 
regardless of the environmental conditions and/or the mechanical failures. These 
results also show that in both cases the genotype of Snakebots adapts to changes in 
the fitness landscape by drifting away from the genotype of the common ancestor – 
the Snakebot evolved in smooth environment, used to initially feed the adapting popu-
lations of Snakebots. Moreover, the strong correlation between the genotypes of 
adapted Snakebots (CC-D=0.91) suggests that the adaptation in both cases is achieved 
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through a drift towards adjacent niches in the genotypic space of the Snakebot. This, 
in turn, yields the discovered phenotypic analogy between the adapted Snakebots, as 
discussed above in Sections 3.2 and 3.3.  

3.5   Cross-Verification of Generality of Adapted Locomotion Gaits 

The anticipated practical implications of the analogy between the emergent properties 
of the sidewinding gaits, adapted to different fitness landscapes, are related to the 
possibility to develop a general locomotion gait which could be autonomously acti-
vated in case of any degradation of velocity of Snakebot. This activation could be 
done without the necessity for the Snakebot to diagnose the underlying reason for 
such degradation (e.g., either a challenging environment or degraded mechanical 
abilities). To verify the feasibility of such an approach, we examined the performance 
of the same three categories of best-performing Snakebots – (i) evolved in a smooth 
environment, (ii) adapted to challenging environment, and (ii) adapted to degraded 
mechanical abilities due to damage of 8 segments (as elaborated earlier in Sections 
3.1, 3.2 and 3.3 respectively). The performance, aggregated over 20 best-performing 
Snakebots, obtained from 10 independent runs of an evolution with the condition 
Fitness>100 removed from the termination criterion of GP (refer to Table 1), is 
shown in Figure 7.  
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Fig. 7. Performance of the best-performing Snakebots evolved in a smooth environment (a), 
evolved in challenging environment (b), and adapted to the degraded mechanical abilities due 
to damage of eight morphological segments (c) in various “unexpected” fitness landscapes 
corresponding to a smooth environment (S), challenging terrain (C), and degraded mechanical 
abilities due to a damage to one- (D1), two-  (D2), four- (D4) and eight  (D8) – out of 15 – 
morphological segments 

 

As Figure 7a illustrates, the average fitness of the Snakebots, evolved in smooth 
environment drops more than twice in challenging terrain to 70%, 55%, 45% and 10% 
of the initial value for Snakebots with one, two, four and eight damaged segments, 
respectively, indicating relatively poor generality of these locomotion gaits. Con-
versely, the average fitness of the Snakebots, evolved in challenging terrain  
(Figure 7b) increases to 116% of its initial value in smooth terrain, and drops only to 
97%, 75%, and 60% of the initial value for Snakebots with one-, two- and four- dam-
aged segments, respectively. However, the average fitness of the Snakebots with eight 
damaged segments is only 25% of the initial value, suggesting that the degradation of 
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the performance, inflicted by such damage is so heavy that it requires an especially 
adapted locomotion gait. The performance of Snakebots, adapted to degraded  
mechanical abilities due to damage of eight segments, shown in Figure 8c, support 
this conclusion. Indeed, the average fitness of the heavily damaged (with eight broken 
segments), especially adapted Snakebots is more than twice higher than of the equally 
damaged Snakebots, obtained from an evolution in challenging environment  
(Figure 7c). For Snakebots with one-, two- and four damaged segments these locomo-
tion gaits are slightly superior to the gaits obtained from evolution in challenging 
terrain, and, naturally, somehow inferior to them in challenging environment.  

4   Conclusion 

We considered the adaptation of evolved locomotion gaits of simulated snake-like 
robot (Snakebot) to two distinct changes in the fitness landscape which, in the real-
world, are most likely to cause a degradation of the performance of Snakebot – (i) a 
challenging terrain and (ii) a Snakebot’s partial mechanical damage. We focused on 
the generality of the locomotion gaits, adapted to these changes in the fitness land-
scape, and observed the emergence of an additional elevation of the body and  
increased winding angle as common traits in these gaits. Discovering the strong corre-
lation between the genotypes of the adapted gaits, we concluded that the adaptation is 
achieved through a drift towards adjacent niches in the genotypic space of the evolv-
ing Snakebots. Finally, we verified experimentally the generality of the adapted gaits 
in various fitness landscapes corresponding to a smooth environment, challenging 
terrain, and mechanical failures of one-, two-, four- and eight (out of 15) morphologi-
cal segments. We argue that due to the explored generality of the adapted gaits, in 
response to an eventual degradation of its velocity, the Snakebot might only activate a 
general locomotion gait, without the need to diagnose and treat the concrete underly-
ing reason for such degradation. We consider this work as a step towards building real 
Snakebots, which are able to perform robustly in difficult environment. 
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Abstract. A new model for evolving crossover operators for evolution-
ary function optimization is proposed in this paper. The model is a hybrid
technique that combines a Genetic Programming (GP) algorithm and a
Genetic Algorithm (GA). Each GP chromosome is a tree encoding a
crossover operator used for function optimization. The evolved crossover
is embedded into a standard Genetic Algorithm which is used for solv-
ing a particular problem. Several crossover operators for function opti-
mization are evolved using the considered model. The evolved crossover
operators are compared to the human-designed convex crossover. Nu-
merical experiments show that the evolved crossover operators perform
similarly or sometimes even better than standard approaches for several
well-known benchmarking problems.

1 Introduction

Evolutionary algorithms are relatively robust over many different types of search
spaces. This is why they are often chosen for use where there is little domain
knowledge.

However, for particular problem domains, their performance can often be
improved by tuning their parameters (such as type of operators, probabilities
of applying the genetic operators, population size etc). One possible way to
obtain good parameters is to let them to be adjusted along with the population
of solutions. Another possibility is to evolve a population of parameters (or
operators) which are applied for solving a particular problem. This is usually
referred in the literature as Meta EA (or Meta GP) and it has been successfully
applied for evolving complex structures (such as computer programs) [4], [8],
[10], [12], [13].

Usually the genetic operators are fixed by the programmer and are not modi-
fied during the search process. Moreover, the same particular operators are used
for a wide range of problems. This could lead to non-optimal behavior of the
considered algorithms for some particular problems.

Our purpose is to find (by using evolutionary techniques) genetic operators
which are suitable for solving particular problems. Roughly speaking, we will let
the problem find by itself the genetic operators that correspond to its structure.

P. Collet et al. (Eds.): EuroGP 2006, LNCS 3905, pp. 97–108, 2006.
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A new model for evolving crossover operators is proposed in this paper1. The
model is a hybrid technique that combines Genetic Programming (GP) [6] and
Genetic Algorithms (GAs) [5] within a two-level model. Each GP chromosome
encodes a crossover operator which contains standard symbols (mathematical
operators, constants and some variables). The evolved crossover is embedded
into a standard Genetic Algorithm which is used for solving a particular problem
(function optimization in our case).

The evolved crossover operators are compared to the human-designed convex
crossover. For numerical experiments we have used ten artificially constructed
functions and one real-world problem. Results show that the evolved crossover
operators perform similarly or sometimes even better than standard approaches
for several well-known benchmarking problems.

This research was motivated by the need of answering several important ques-
tions concerning genetic operators. The most important question is: Can genetic
operators be automatically synthesized by using only the information about the
problem being solved? And, if yes, which are the symbols that have to be used
within a genetic operator (for a given problem)? We better let the evolution find
the answer for us.

The paper is structured as follows: section 2 discusses work related to the
evolution of evolutionary structures (such as genetic operators or evolutionary
algorithms). The proposed model is described in section 3. Several numerical
experiments are performed in section 4. Conclusions and further work directions
are discussed in section 5.

2 Related Work

Several attempts for evolving variation operators for different techniques were
made in the past.

Teller [13] describes a procedure for automatic design and the use of new
genetic operators for GP. These SMART operators are co-evolved with the main
population of programs and they learn to recombine the new population better
than random genetic recombination. The SMART operators are programs that
learn to do a graph crossover better than standard GP crossover.

Meta-Genetic Programming (MGP) [4] encodes the genetic operators as trees.
These operators “act” on other tree structures to produce the next generation of
individuals. In his paper on Meta-Genetic Programming [4], Edmonds used two
populations: a standard GP population and a co-evolved population of operators
that act on the main population. This technique introduces extra computational
cost, which must be weighed against any advantage gained. Also the technique
turns out to be very sensitive to biases in the syntax, from which the operators
are generated, therefore it is less robust.

Peter Angeline [1] investigated the possibility of a “self-adaptive” crossover
operator. In this work, the basic operator action is fixed (as a crossover) but
1 The source code for evolving crossover operators and all the evolved operators will

be available on www.eea.cs.ubbcluj.ro
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probabilistic guidance is used to help the operator to choose the crossover nodes
so that the operation is more productive.

Note that all these approaches are focused on evolving a crossover operator for
GP technique. Their purpose was to obtain a better GP crossover. Our approach
is quite different: we use a standard GP technique (with standard GP crossover)
for evolving a crossover operator for evolutionary function optimization. We have
trained our GP algorithm to find the expression of a crossover operator using
one test function, and then we test this operator for other 10 functions.

3 Proposed Model

3.1 Representation

Consider the standard convex crossover operator [2], [5], [9]:

Offspring = x ∗ α + (1 − α) ∗ y.

The right-hand expression may be easily represented as a GP individual de-
picted in Figure 1.

+

*

X

1

Y

*

_

Fig. 1. Convex crossover. Two parents x and y are recombined in order to obtain an
offspring. α is a real value randomly generated between 0 and 1. If the function to be
optimized has multiple dimensions, the convex crossover operator will be applied for
each of them.

Our purpose is to evolve a crossover operator (for function optimization)
based on the information taken from a function to be optimized. The evolved
crossover will be represented as a GP tree. The set of GP function symbols will
consist in mathematical operators that can appear into a crossover operator:

F = {+, −, ∗, sin, cos, exp}
Our aim is to design a crossover operator which is able to optimize func-

tions defined over any real domain. Not all genetic operators can do that. For
instance, a genetic operator defined as sin(x) + sin(y) will considerably reduce
the search space to the interval [-2, 2]. If the optimal solution is not in that
interval, our algorithm, which uses only that variation operator, will not be able
to find it.
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An idea is to have a crossover operator whose inputs (the parents and any
other values placed in the leaves of the tree) are real values between 0 and 1.
The output of that chromosome should also be a real number between 0 and 1.
When we apply this operator for a particular problem, first we need to scale
the parents to the [0, 1] interval and then we need to scale the output of the
crossover to the definition domain of the function to be optimized. For instance,
if the domain of the function to be optimized is [-5, 5], we need to scale down
the parents to the interval [0, 1] and then we apply crossover and then we need
to scale up the [0, 1] result to the interval [-5, 5].

Because we are dealing with real-valued definition domains (e.g. [0,1]) we have
to find a way of protecting against overflowing these limits. For instance if we
employ a standard addition of two numbers greater than 0.5 we would get a result
greater than 1 (domain upper bound). Thus, each operator has been redefined in
order to output result in the standard interval [0,1]. The redefinitions are given
in Table 1.

Table 1. The redefinitions of the operators so that the output should always be between
0 and 1 if the inputs are between 0 and 1

Operator Definition
+ (x + y)/2
− |x − y|
∗ None (If you multiply two numbers between 0 and 1 you will

always get a number between 0 and 1.)
sin sin(x)/sin(1)
cos cos(x)/cos(1)
exp exp(x)/exp(1)

The terminal set is composed by several, uniformly distributed, constants
between 0 and 1. Our purpose is to design a genetic operator that recombines
two parents. Thus, the terminal set should also contain two symbols reserved for
parents (x and y).

T = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, x, y, R},

where R is actually a function with no arguments that always outputs a random
value between 0 and 1. This terminal symbol was added in order to simulate the
α parameter from the convex crossover. Note that if the function has multiple
dimensions the evolved crossover operator will be applied for each of them.

3.2 The Model

The proposed approach is a hybrid technique divided in two levels: a macro
level and a micro level. The macro level is a GP algorithm that evolves crossover
operators for function optimization. The micro level is a GA used for computing
the quality of a GP individual.
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When we compute the quality of a GP chromosome we actually have to com-
pute the quality of the crossover operator encoded in that GP tree. For assessing
the performance of a crossover operator we have to embed that operator within
an evolutionary algorithm and we have to run the obtained algorithm for a par-
ticular problem. Since our problem is a function optimization we embed the
evolved crossover within as standard Genetic Algorithm as described in [2], [9].

The fitness of a GP individual is equal to the fitness of the best solution
generated by the Genetic Algorithm which uses the GP tree as the crossover
operator. But, since the GA uses pseudo-random numbers, it is very likely that
successive runs of the same algorithm will generate completely different solu-
tions. This problem can be fixed in a standard manner: the GA embedding the
GP individual is run more times (200 runs in fact) and the fitness of the GP
chromosome is averaged over all runs.

3.3 The Algorithms

The algorithms used for evolving a crossover operator are described in this sec-
tion. As we said before we are dealing with a hybrid technique which has a macro
level and a micro level.

The Macro-level Algorithm. The macro level algorithm is standard GP al-
gorithm [6] used for evolving crossover operators for function optimization.

We use steady-state evolutionary model as underlying mechanism for our
GP implementation. The GP algorithm starts by creating a random population
of individuals (trees). The following steps are repeated until a given number
of generations is reached: Two parents are selected using a standard selection
procedure. The parents are recombined in order to obtain two offspring. The
offspring are considered for mutation. The best offspring O replaces the worst
individual W in the current population if O is better than W .

The Micro-level Algorithm. The micro level algorithm is a Genetic Algorithm
[5] used for computing the fitness of each GP individual from the macro level.
The GA starts by creating a random population of individuals. Each individual
is a real-valued array whose number of dimensions is equal to the number of
dimensions of the function to be optimized. The entire process is run along a
fixed number of generations. The best individual in the current population is
automatically copied to the next generation. The following steps are repeated
until the new population is filled: two parents are selected randomly and are
recombined in order to obtain one offspring which will be added to the new
population.

We have removed the mutation operator and we have performed random
selections. In this way, the performance of the algorithm will mainly be guided
by the crossover operator only.

The recombination operator is evolved by the macro level algorithm. During
the training stage, the micro-level algorithm is run multiple times and the results
are averaged (see section 3.2).
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4 Numerical Experiments

In this section, several numerical experiments for evolving crossover operators
for function optimization are performed. After evolving it, the crossover oper-
ator is embedded into a Genetic Algorithm and used to solve eleven difficult
benchmarking problems. Ten functions are artificially constructed and one test
problem (the Portfolio Selection Problem) is an important real-world problem
(Table 2). Several numerical experiments, with a standard Genetic Algorithm
[5] that use a convex crossover for function optimization, are also performed.
Finally the results are compared.

The Portfolio Selection Problem. Modern computational finance has its
historical roots in the pioneering portfolio theory of Markowitz [7]. This theory
is based on the assumption that investors have an intrinsic desire to maximize
return and minimize risk on investment. Mean or expected return is employed
as a measure of return, and variance or standard deviation of return is employed
as a measure of risk. This framework captures the risk-return tradeoff between
a single linear return measure and a single convex nonlinear risk measure.

The solution typically proceeds as a two-objective optimization problem where
the return is maximized while the risk is constrained to be below a certain
threshold. The well-known risk-return efficient frontier is obtained by varying
the risk target and maximizing on the return measure.

The Markowitz mean-variance model [7] gives a multi-objective optimization
problem, with two output dimensions. A portfolio p consisting of N assets with
specific volumes for each asset given by weights wi is to be found, which mini-
mizes the variance of the portfolio:

σp =
N∑

i=1

N∑
j=1

wiwjσij (1)

maximizes the return of the portfolio:

μp =
N∑

i=1

wiμi (2)

subject to:
∑N

i=1 wi = 1, 0 ≤ wi ≤ 1, where i = 1...N is the index of the asset,
N represents the number of assets available, μi the estimated return of asset i
and σij the estimated covariance between two assets. Usually, μi and σij are to
be estimated from historic data. While the optimization problem given in (1)
and (2) is a quadratic optimization problem for which computationally effective
algorithms exist, this is not the case if real world constraints are added. In this
paper we treat only the cardinality constraints problem [11].

Cardinality constraints restrict the maximal number of assets used in the
portfolio

N∑
i=1

zi = K, (3)
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where zi = sign(wi). Let K be the desired number of assets in the portfolio, εi be
the minimum proportion that must be held of asset i, (i = 1, ..., N) if any of asset
i is held, δi be the maximum proportion that can be held of asset i, (i = 1, ..., N)
if any of asset i is held, where we must have 0 ≤ εi ≤ δi ≤ 1(i = 1, ..., N). In
practice, εi represents a “min-buy” of “minimum transaction level” for asset i
and δi limits the exposure of the portfolio to asset i.

εizi ≤ wi ≤ δizi, i = 1...N (4)
wi ∈ [0, 1], i = 1...N. (5)

Eq. (3) ensures that exactly K assets are held. Eq. (4) ensures that if any of
asset i is held (zi = 1) its proportion wi must lie between εi and δi, whilst if
none of asset is held (zi = 0) its proportion wi is zero. Eq. (5) is the integrality
constraint. The objective function (Eq. (1)), involving as it does the covariance
matrix, is positive semi-definite and hence we are minimizing a convex function.
The chromosome - within the GA heuristic - supposes (conform to [3]) a set Q
of K distinct assets and K real numbers si, (0 ≤ si ≤ 1), i ∈ Q.

Now, given a set Q of K assets, a fraction
∑

j∈Q εj of the total portfolio is
already accounted for and so we interpret si as relating to the share of the free
portfolio proportion (1 −

∑
j∈Q εj) associated with asset i ∈ Q.

Thus, our GA chromosome will encode real numbers si and the proportion of
asset i from Q in portfolio will be:

wi = εi +
si∑

j∈Q sj
(1 −

∑
j∈Q

εj) (6)

For this experiment we have used the daily rate of exchange for a set of assets
quoted to Euronext Stock [16] during June to December, 2002.

4.1 Experimental Results

We evolve a crossover operator (used by Genetic Algorithm for function opti-
mization) and then we assess its performance by comparing it with the standard
convex crossover.

Experiment 1. A crossover operator is evolved in this experiment. For evolving
this kind of genetic operator we use a modified version of function f1 as the
training problem. We need this modification to function f1 because its optimal
solution is x∗ = (0, 0, ..., 0). This means that a crossover (obtained by evo-
lution) which always outputs value 0 will be able to solve this problem in one
generation (in fact after the first crossover operation). An example of this kind
of crossover is x−x or 0.3−0.3 or other similar structures. The same issue could
appear for all training problems whose optimal solution is an array containing
the same constant (e.g. x∗ = (1.56, 1.56... 1.56)). In all these cases the macro
level algorithm could evolve a tree (crossover operator) whose output is always
a constant value.
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Table 2. Test functions used in our experimental study. The parameter n is the space
dimension (n = 5 in our numerical experiments) and fmin is the minimum value of the
function. All functions should be minimized.

Test function Domain fmin

f1(x) =
n

i=1

(i · x2
i ). [-10, 10]n 0

f2(x) =
n

i=1

x2
i . [-100, 100]n 0

f3(x) =
n

i=1

|xi| +
n

i=1

|xi|. [-10, 10]n 0

f4(x) =
n

i=1

i

j=1

xj

2

. [-100, 100]n 0

f5(x) = maxi{xi, 1 ≤ i ≤ n}. [-100, 100]n 0

f6(x) =
n−1

i=1

100 · (xi+1 − x2
i )2 + (1 − xi)2. [-30, 30]n 0

f7(x) = 10 · n +
n

i=1

(x2
i − 10 · cos(2 · π · xi)) [-5, 5]n 0

f8(x) = −a · e−b

n

i=1
x2

i

n − e
cos(c·xi)

n + a + e. [-32, 32]n

a = 20, b = 0.2, c =
2π.

0

f9(x) = 1
4000

·
n

i=1

x2
i −

n

i=1

cos( xi√
i
) + 1. [-500, 500]n 0

f10(x) =
n

i=1

(−xi · sin( |xi|)) [-500, 500]n -n∗ 418.98

f11 = The Portfolio Selection Problem [0, 1]n 0

In order to avoid this problem we have to modify the training function. We
do this by adding some randomly generated constants to each variable xi. We

obtain the function: f1(x) =
n∑

i=1
(i · (xi − ri)2), where ri are some randomly

generated constants between -10 and 10. In this case the optimal solution is
x∗ = (r1, r2...rn).

We have two possibilities for generating the constants: we could keep them
fixed during training or we could generate new constants each time the function
is called. The second strategy seems to be more general. However, we have tested
both strategies, but, for our simple case, both provided similar results.

Note that the modified function is used in the training stage only. During
testing stage we use the unmodified (see Table 2) version of the function.

The parameters of the GP algorithm (macro level) are given in Table 3. For
GA we use a population with 200 individuals,each of them with 5 dimensions.
During 50 generations we apply random selection and recombination (using the
evolved crossover) with probability 0.8.

We performed 30 independent runs for evolving operators. In all runs we
obtained a very good crossover operator able to compete with the standard
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Table 3. The parameters of the GP algorithm (the macro level algorithm) used for
evolving genetic operators

Parameter Value
Population size 50
Number of generations 100
Maximum size (depth) for a tree 10
Initialization Ramped half and half
Crossover probability 0.8
Mutation probability 0.1
Function set F = {+, −, ∗, sin, cos, exp}
Terminal set T = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6,

0.7, 0.8, 0.9, 1.0, x, y, R}

Fig. 2. The evolution of the fitness of the best/worst GP individual, and the average
fitness (of all GP individuals in the population) in a particular run. We have depicted
a window of 25 generations for a better visualization of the results.

convex crossover. The results obtained in one of the runs (randomly selected
from the set of 30 runs) are presented in Figure 2.

Crossover operators of different complexities have been evolved. The sim-
plest operators contain 5 nodes, whereas the most complex evolved operator
has 17 nodes. One of the simplest evolved operators is depicted (as GP tree) in
Figure 3. We can see that the complexity of the evolved operator is similar to
the complexity of the standard convex crossover.

The crossover operator (given in Figure 3) will be used in the numerical
experiments performed in the next section.

Experiment 2. This experiment serves our purpose to compare the evolved
crossover operator with a convex crossover operator [5]. A Genetic Algorithm [5]
is used for testing the quality of the crossover operators. This algorithm has the
same structure as the one used in the previous experiment (the micro level al-
gorithm), the only difference being the employed recombination operators. First
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Fig. 3. One of the evolved crossover operators represented as a GP tree. The function
symbols have been defined in Table 1.

Table 4. The results obtained by applying the evolved operator and the standard
convex crossover to the considered test functions. Best/Worst stands for the fitness of
the best individual in the best/worst run. The results are averaged over 500 runs.

Func- Evolved crossover Convex crossover
tions Best Worst Mean StdDev Best Worst Mean StdDev
f1 0.036 1.157 0.513 0.215 0.093 16.320 2.945 2.490
f2 3.630 194.718 78.036 32.348 12.796 2884.690 438.121 343.631
f3 0.415 2.590 1.561 0.342 0.644 9.586 3.589 1.514
f4 5.263 202.777 76.756 34.022 14.588 4512.660 496.383 524.641
f5 1.325 9.496 6.030 1.355 1.720 37.528 13.243 5.286
f6 58.786 4936.8 1198.430 833.183 102 1.65E+0657400 1.33E+05
f7 1.387 16.745 8.881 2.600 2.007 34.621 16.877 5.973
f8 2.681 8.272 5.986 0.895 3.497 17.300 9.719 72.452
f9 0.557 2.223 1.426 0.250 0.619 19.568 3.576 2.188
f10 -1436.21 -417.259 -849.782 189.805 -1470.00 -454.968 -884.159 198.569
f11 1.49E-04 1.98E-04 1.64E-04 8.75E-06 1.47E-04 3.32E-04 1.87E-04 3.12E-05

Table 5. The results of F-test and t-test

Functions F-test t-test Functions F-test t-test
f1 7.48E-03 2.32E-15 f7 1.89E-01 5.16E-42
f2 8.86E-03 4.91E-13 f8 1.33E-01 1.77E-43
f3 5.10E-02 5.41E-33 f9 1.31E-02 1.46E-12
f4 4.21E-03 2.99E-08 f10 9.14E-01 1.45E-01
f5 6.57E-02 1.42E-31 f11 3.71E-51 1.96E-143
f6 3.95E-05 1.77E-03

we run the GA employing the evolved crossover and later we run the same GA,
with the same parameters, using the convex crossover this time. The results of
this experiment are presented in Table 4.

Taking into account the average values presented in Table 4 we can conclude
that the evolved operator performs significantly better than the classical recom-
bination in 10 out of 11 cases. Taking into account the best values we can see
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that the evolved crossover performs better than the convex crossover in 10 cases
(out of 11).

In order to determine whether the differences between the evolved crossover
and the convex crossover are statistically significant, we use a t-test with a 0.05
level of significance. Before applying the t-test, an F-test is used for determining
whether the compared data have the same variance. The P-values of a two-tailed
t-test with 499 degrees of freedom are given in Table 5. Table 5 shows that the
differences between the results obtained by standard convex crossover and by
the evolved crossover are statistically significant (P < 0.05) in 9 cases.

5 Conclusions and Further Work

A new hybrid technique for evolving crossover operators has been proposed in
this paper. The model has been used for evolving crossover operators for function
optimization. Numerical experiments have shown that the evolved crossover per-
forms better than the standard convex crossover for most of the test problems.
However, taking into account the No Free Lunch theorems for Search and Opti-
mization [15] we cannot make any assumption about the generalization ability of
the evolved crossover operators. Further numerical experiments are required in
order to assess the power of the evolved operators. Further work will be focused
on: evolving better crossover operators for real encoding, evolving more complex
genetic operators which can act as both crossover and mutation, evolving genetic
operators for other problems.
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Abstract. Fitness functions based on test cases are very common in
Genetic Programming (GP). This process can be assimilated to a learn-
ing task, with the inference of models from a limited number of samples.
This paper is an investigation on two methods to improve generalization
in GP-based learning: 1) the selection of the best-of-run individuals using
a three data sets methodology, and 2) the application of parsimony pres-
sure in order to reduce the complexity of the solutions. Results using GP
in a binary classification setup show that while the accuracy on the test
sets is preserved, with less variances compared to baseline results, the
mean tree size obtained with the tested methods is significantly reduced.

This paper is an experimental study of methodologies for Evolutionary Compu-
tations (EC) inspired by common practices in the Machine Learning (ML) and
Pattern Recognition (PR) communities. More specifically, using Genetic Pro-
gramming (GP) for supervised learning, we aim at evaluating both the effect
of using a three data sets methodology (training, validation, and test sets) and
the effect of minimizing the classifiers complexity. Our experiments show that
these approaches preserve the performances of GP, while significantly reducing
the size of the best-of-run solutions, which is in accordance with Occam’s Razor
principle.

The structure of the paper goes as follow. Section 1 starts with a high-level
description of the tested approaches and their justifications. A presentation of
relevant work follows in Section 2. Thereafter, the methodology used in the
experiments is detailed in Section 3. Finally, Section 4 presents the experimental
results obtained on six binary classification data sets, and Section 5 concludes
the paper.
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1 Introduction

GP is particularly suited for problems that can be assimilated to learning tasks,
with the minimization of the error between the obtained and desired outputs
for a limited number of test cases – the training data, using a ML terminology.
Indeed, the classical GP examples of symbolic regression, boolean multiplexer
and artificial ant [1] are only simple instances of well-known learning problems
(i.e. respectively regression, binary classification and reinforcement learning).
In the early years of GP, these problems were tackled using a single data set,
reporting results on the same data set that was used to evaluate the fitnesses
during the evolution. This was justifiable by the fact that these are toy problems
used only to illustrate the potential of GP. In the ML community, it is recognized
that such methodology is flawed, given that the learning algorithm can overfit
the data used during the training and perform poorly on unseen data of the same
application domain [2, 3]. Hence, it is important to report results on a set of data
that was not used during the learning stage. This is what we call in this paper a
two data sets methodology, with a training set used by the learning algorithm and
a test set used to report the performance of the algorithm on unseen data, which
is a good indicator of the algorithm’s generalization (or robustness) capability.
Even though this methodology has been widely accepted and applied in the ML
and PR communities for a long time, the EC community still lags behind by
publishing papers that are reporting results on data sets that were used during
the evolution (training) phase. This methodological problem has already been
spotted (see [4]) and should be less and less common in the future.

The two data sets methodology prevents reporting flawed results of learning
algorithms that overfit the training set. But this does not prevent by itself over-
fitting the training set. A common approach is to add a third data set – the
validation set – which helps the learning algorithm to measure its generaliza-
tion capability. This validation set is useful to interrupt the learning algorithm
when overfitting occurs and/or select a configuration of the learning machine
that maximizes the generalization performances. This third data set is com-
monly used to train classifiers such as back-propagation neural networks and
can be easily applied to EC-based learning. But this approach has an important
drawback: it removes a significant amount of data from the training set, which
can be harmful to the learning process. Indeed, the richer the training set, the
more representative it can be of the real data distribution, and the more the
learning algorithm can be expected to converge toward robust solutions. In the
light of these considerations, an objective of this paper is to investigate the effect
of a validation set to select the best-of-run individuals for a GP-based learning
application.

Another concern of the ML and PR communities is to develop learning algo-
rithms that generate simple solutions. An argument behind this is the Occam’s
Razor principle, which states that between solutions of comparable quality, the
simplest solutions must be preferred. Another argument is the minimum de-
scription length principle [5], which states that the “best” model is the one that
minimizes the amount of information needed to encode the model and the data
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given the model. Preference for simpler solutions and overfitting avoidance are
closely related: it is more likely that a complex solution incorporates specific
information from the training set, thus overfitting the training set, compared
to a simpler solution. But, as mentioned in [6], this argumentation should be
taken with care as too much emphasis on minimizing complexity can prevent
the discovery of more complex yet more accurate solutions.

There is a strong link between the minimization of complexity in GP-based
learning and the control of code bloat [1, 7], that is an exaggerated growth
of program size in the course of GP runs. Even though complexity and code
bloat are not exactly the same phenomenon, as some kind of bloat is gener-
ated by neutral pieces of code that have no effect on the actual complexity of
the solutions, most of the mechanisms proposed to control it [8, 9, 10, 11] can
also be used to minimize the complexity of solutions obtained by GP-based
learning.

This paper is a study of GP viewed as a learning algorithm. More specifically,
we investigate two techniques to increase the generalization performance and
decrease the complexity of the models: 1) use of a validation set to select best-
of-run individuals that generalize well, and 2) use of lexicographic parsimony
pressure [10] to reduce the complexity of the generated models. These tech-
niques are tested using a GP encoding for binary classification problems, with
vectors taken from the learning sets as terminals, and mathematical operations
to manipulate these vectors as branches. This approach is tested on six different
data sets from the UCI ML repository [12]. Even if the proposed techniques are
tested in a specific context, we argue that they can be extended to the frequent
situations where GP is used as a learning algorithm.

2 Related Work

Some GP learning applications [13, 14, 15] have made use of a three data sets
methodology, but without making a thorough analysis of its effects. Panait and
Luke [16] conducted some experiments on different approaches to increase the
robustness of the solutions generated by GP, using a three data sets methodol-
ogy to evaluate the efficiency of each approach. Rowland [17] and Kushchu [18]
conducted studies on generalization in EC and GP. Both of their argumenta-
tions converge toward the testing of solutions in previously unseen situations for
improving robustness.

Because of the bloat phenomenon, typical in GP, parsimony pressure has
been more widely studied [9, 19, 20, 21]. In particular, several papers [22, 23, 24]
have produced interesting results around the idea of using a parsimony pressure
to increase the generalization capability of GP-evolved solutions. However, a
counter-argumentation is given in [25], where solutions biased toward low com-
plexity have, in some circumstances, increased generalization error. This is in
accordance with the argumentation given in [6], which states that less complex
solutions are not always more robust.
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3 Methodology

The experiments conducted in this work are based on a GP-setup specialized for
binary classification problems. The data processed by the primitives are vectors
of two possible sizes, either of size one (a scalar value), or of size n, the feature
set size. Table 1 presents the set of primitives used to build the programs.

Three main families of primitives were used: the mathematical function prim-
itives (ADD, SUB, MUL, DIV, MXF, MNF, ABS, and SLN), the vector-to-
scalar primitives (SUM, MEA, MXV, MIV, and L2), and the vectorial terminals
(E and X). The mathematical function primitives with two arguments (ADD,
SUB, MUL, DIV, MXF, and MIF) are defined to deal with arguments of differ-
ent sizes by applying the function to each component of the n-sized arguments,
when necessary repeatedly using the value of the scalar arguments. More for-
mally, if f(x1, x2) denotes the function associated to the primitive presented in
Table 1, the output of these primitives is:

– A scalar [f(x1(1), x2(1))], if both arguments are scalars;
– A size n vector [f(x1(1), x2(1)) f(x1(1), x2(2)) . . . f(x1(1), x2(n))]T , if the

first argument is a scalar and the second a vector;
– A size n vector [f(x1(1), x2(1)) f(x1(2), x2(1)) . . . f(x1(n), x2(1))]T , if the

first argument is a vector and the second a scalar;
– A size n vector [f(x1(1), x2(1)) f(x1(2), x2(2)) . . . f(x1(n), x2(n))]T , if both

arguments are vectors.

Table 1. GP primitives used to build the classifiers

Name # args. Description
ADD 2 Addition, fADD(x1, x2) = x1 + x2.
SUB 2 Subtraction, fSUB(x1, x2) = x1 − x2.
MUL 2 Multiplication, fMUL(x1, x2) = x1x2.

DIV 2 Protected division, fDIV(x1, x2) =
1 |x2| < 0.001

x1/x2 otherwise
.

MXF 2 Maximum value, fMXF(x1, x2) = max(x1, x2).
MNF 2 Minimum value, fMNF(x1, x2) = min(x1, x2).
ABS 1 Absolute value, fABS(x) = |x|.

SLN 1 Saturated symmetric linear function, fSLN(x) =
1 x > 1
−1 x < −1
x otherwise

.

SUM 1 Sum of vector’s components, fSUM(x) = i xi.
MEA 1 Mean of vector’s components, fMEA(x) = ixi

card(x)
.

MXV 1 Maximum of vector’s components, fMXV(x) = maxi xi.
MIV 1 Minimum of vector’s components, fMIV(x) = mini xi.
L2 1 L2 norm of the vector, fL2(x) = i x2

i .
E 0 Ephemeral random vector, generated by copying the value of a ran-

domly selected training set data.
X 0 Vector with the value of the data to classify.
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On the other hand, the vector-to-scalar primitives are defined to convert a vec-
tor argument of size n into a scalar output. When the argument is a scalar, it
is returned as output value as is, without modification, except for the L2 prim-
itive which returns the absolute value of the input scalar. Finally, the vectorial
terminals are always vectors of size n, with either randomly selected data of the
training set (terminal E), used as constants, or the value of the data to classify
(terminal X), used as the variable of the problem.

The data evaluated is classified according to the output of the GP tree, that is
assigned to the first class for an output value positive or zero, otherwise assigned
to the second class. If necessary, the output of the GP program is converted into
a scalar beforehand, by a summation of each vector’s components, as does the
primitive SUM.

In order to test the effect of using a validation set and applying some par-
simony pressure, GP will be tested on common binary classification data sets
taken from the Machine Learning Repository at UCI [12]. The selected data set
are presented in Table 2. The selection of these data sets was guided by the fol-
lowing main criteria: 1) select appropriate sets for binary classification, 2) select
appropriate sets for 10-folds cross-validation (see below), that is data sets with-
out predefined separated training and testing sets, and 3) select sets of relatively
large size or high dimensionality. The first two criteria were chosen in order to
fit into our general methodology, to avoid special data manipulations, while the
last criterion was postulated in an attempt to select not too easy data sets, that
should help to generate discriminant results.

Table 2. Description of UCI data sets used for the experimentations

Data # of
set Size features Application domain
bcw 699 9 Wisconcin’s breast cancer, 65.5 % benign and 34.5 % malignant.
cmc 1473 9 Contraceptive method choice, 42.7 % not using contraception and

57.3 % using contraception.
ger 1000 24 German credit approval, 70 % approved and 30 % not approved.
ion 351 34 Ionosphere radar signal, 35.9 % without structure detected and

64.9 % with a structure detected.
pid 768 8 Pima Indians diabetes, 65.1 % tested negative and 34.9 % tested

positive for diabetes.
spa 4601 57 Spam e-mail, 60.6 % non-junk e-mail and 39.4 % junk e-mail.

Before the experiments, each data set was randomly divided into 10 folds
of equal size, taking care to balance the number of data of each class between
the folds. A 10-folds cross-validation [2] has been conducted using the data in 9
folds as the training set for an evolution, reporting the test set error rate on the
remaining fold. For each tested configuration, the process is repeated 10 times
for each fold, for a total of 100 evolutions per configuration. The reported results
consist in the means for these 100 evolutions.
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Our experimentations are conducted on four different configurations:

1. Baseline: The fitness measure consists in minimizing the error rate on the
complete training set. The best-of-run individual is simply the individual of
the evolution with the lowest error rate on the training set, with the smallest
individual selected in cases of ties.

2. With validation: For each evolution, the training set is randomly divided
into two data sets: the fitness evaluation data set, with 67% of the training
data, and the validation set, with the remaining 33%. The class distribution
of the data is well-balanced between the sets. The fitness measure consists in
minimizing the error rate on the fitness evaluation set. At each generation,
a two-objective sort is conducted in order to extract a set of non-dominated
individuals (the Pareto front), with regards to the lowest fitness evaluation
set error rate and the smallest individuals. These non-dominated individuals
are then evaluated on the validation set, with the best-of-run individual
selected as the one of these with the smallest error rate on the validation
set, ties being solved by choosing the smallest individual.

3. With parsimony pressure: A lexicographic parsimony pressure [10] is
applied to the evolution by minimizing the error rate on the complete train-
ing set, using the individual size as second point of comparison in cases
of identical error rates. As with the baseline configuration, the best-of-run
individual is the individual of the evolution with the lowest error rate on
the training set, with the smallest individual selected in cases of ties (strict
equality).

4. With validation and parsimony pressure: A mix of the two previ-
ous configurations, by separating the training set into two sets, the fitness
evaluation set (67% of the data) and the validation set (33% of the data),
and making use of the lexicographic parsimony pressure. The fitness evalua-
tion set is used to compute the error rate that guides the evolution while the
validation set is used only to select the best-of-run individual. The selection
of this best-of-run individual is identical to the with validation configura-
tion, by extracting a Pareto front of the non-dominated individuals of the
current generation (fitness evaluation set error rates vs individual sizes). At
each generation, all these non-dominated individuals are tested on the
validation set. The best-of-run individual is selected as the solution that
minimizes the validation error rate, breaking ties by preferring the smallest
individuals.

Thus, for the second and fourth settings, the Pareto front is extracted at
each generation for testing against the validation set. This is motivated by two
main reasons: 1) it is important to reduce the number of solutions tested against
the validation set, in order not to select best-of-run solutions that are just “by
chance” performing well on the validation set, and 2) it is desirable to test on
the validation set a range of solutions with different accuracy/size trade-offs.
It should be stressed that tournament selection is used in all evolutions, with
lexicographic ranking for the third and fourth configurations. Strictly speaking,
this is not a Pareto domination-based multi-objective selection algorithm.
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Table 3. Tableau of the GP evolutions

Parameter Description and parameter values
Terminals and branches See Table 1.

Population size One panmictic population of 1000 individuals.
Stop criterion Evolution ends after 100 generations.

Replacement strategy Genetic operations applied following generational scheme.
Selection Tournaments selection with 2 participants (relative ranking).

Fitness measure Without parsimony pressure: minimize the error rate.
With parsimony pressure: minimize the error rate and,
in case of ties, select the smallest individuals (lexicographic
ranking).

Crossover Classical subtree crossover [1] (probability 0.7).
Standard mutation Replace a subtree with a new randomly generated one (prob-

ability 0.05).
Swap mutation Exchange a primitive with another of the same arity (proba-

bility 0.05).
Shrink mutation Replace a branch with one of its children and remove the

branch mutated and the other children’s subtrees (if any)
(probability 0.05).

Ephemerals mutation Randomly select a new ephemeral random vector (probability
0.05).

Reproduction Copy without modification an existing individual (probability
0.1).

Data normalization The data of the different sets are scaled in [−1, 1] along the
different dimensions.

Table 3 presents the GP parameters used during the experiments. No special
tweaking of these parameter values was done, which correspond in most cases
to the default values of the software tool used. The experimentations have been
implemented using the GP facilities of the Open BEAGLE framework [26].

4 Results

Table 4 presents the detailed results obtained by testing the four configurations
presented in the previous section, using the six data sets of Table 2. The error
rates and tree sizes that are reported consist in the mean and standard deviation
values of the best-of-run individuals for the 100 runs (10 different runs for each
folds). The effort1 consists in a measure of the computations done during the
evolutions. It is calculated by summing the number of GP primitives evaluated
during the runs. More precisely, for configurations without validation, the effort
is computed by counting in the number of primitives in each individual times
the training set size, for all evaluated individuals during the run. For config-
urations with validation, the size of the individuals on Pareto front times the

1 Note that the notion of “effort” presented here is different from the one defined by
Koza in [1].
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Table 4. Error rates, tree sizes and effort for the evolution of GP-based classifiers
using the UCI data sets. Results in italic are not statistically different from those of
the baseline configuration, according to a 95% confidence two-tailed Student’s t-test.
Results in bold are more than 50% smaller than the corresponding baseline results.

Train set rate Valid. set rate Test set rate Tree size Effort
Mean Std. Mean Std. Mean Std. Mean Std. Mean Stdev.

Approach error dev. error dev. error dev. size dev. (×109) (×109)
bcw

Baseline 1.7 % 0.5 % – – 3.4 % 2.3 % 83.4 55.2 4.92 1.5
Validation 2.3 % 0.7 % 2.3 % 0.8 % 3 .3 % 2.3 % 34.2 38.8 4.08 1.2
Parsimony 2.1 % 0.5 % – – 3 .5 % 2.3 % 22.0 18.9 1.10 0.83

Both 2.8 % 0.7 % 2.7 % 1.0 % 3 .3 % 2.1 % 6.5 11.2 0.72 0.55
cmc

Baseline 26.3 % 2.2 % – – 31.2 % 4.8 % 174.8 68.2 11.2 3.5
Validation 28.6 % 3.2 % 30.8 % 3.0 % 32 .5 % 4.5 % 106.4 68.3 8.43 2.7
Parsimony 27.0 % 2.8 % – – 31 .7 % 4.9 % 151.6 62.4 10.1 3.9

Both 29.3 % 3.0 % 29.6 % 3.0 % 32 .1 % 5.0 % 63.7 39.8 6.17 2.2
ger

Baseline 22.7 % 1.6 % – – 29.3 % 3.8 % 175.3 77.9 7.43 2.7
Validation 25.3 % 2.6 % 27.3 % 1.5 % 29 .5 % 3.5 % 78.2 68.8 5.13 1.6
Parsimony 22 .6 % 1.7 % – – 29 .1 % 3.8 % 141.8 69.2 5.73 2.6

Both 25.7 % 2.7 % 26.7 % 1.6 % 29 .6 % 3.2 % 54.8 47.1 3.79 2.0
ion

Baseline 4.1 % 1.2 % – – 10.5 % 5.4 % 149.4 53.0 2.80 0.76
Validation 5.9 % 3.1 % 7.5 % 3.5 % 11 .3 % 6.8 % 94.2 56.3 2.08 0.55
Parsimony 4 .2 % 1.3 % – – 10 .1 % 6.0 % 84.4 38.8 1.88 0.59

Both 7.7 % 2.9 % 7.5 % 2.8 % 11 .0 % 6.3 % 41.6 28.3 1.10 0.35
pid

Baseline 19.9 % 1.2 % – – 25.2 % 4.5 % 149.5 56.8 5.47 1.6
Validation 22.0 % 2.1 % 22.9 % 2.2 % 25 .2 % 4.5 % 60.4 55.5 4.25 1.3
Parsimony 20.1 % 1.2 % – – 24 .7 % 4.4 % 99.6 59.0 3.85 1.2

Both 23.5 % 2.0 % 22.4 % 2.0 % 25 .1 % 4.4 % 28.0 25.4 2.45 0.89
spa

Baseline 12.8 % 2.2 % – – 13.6 % 2.7 % 166.6 62.4 34.4 9.4
Validation 12 .9 % 2.3 % 13.7 % 2.7 % 13 .9 % 2.6 % 148.7 61.7 21.7 6.6
Parsimony 13 .3 % 2.6 % – – 14 .2 % 3.2 % 141.3 56.4 28.6 10.1

Both 13 .1 % 2.2 % 13.5 % 2.2 % 13 .9 % 2.5 % 109.3 47.0 18.7 6.4

validation set size is also taken into account. Italic results in Table 4 are not sta-
tistically different from the corresponding baseline result; hence all other results
are statistically distinct from the baseline.

Figure 1 presents the box plots that stem from a one-way analysis of variance
(ANOVA) conducted on the test set error rates. Looking at the results, it seems
that no approach is clearly superior to the others in term of test set accuracy.
But, taking a closer look we can see that the approach using both the validation
set and parsimony pressure reduces the variance of the test set error rates (first to
third quartile range) for the bcw, ger, pid and spa data sets, having a comparable
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Fig. 1. One-way analysis of variance (ANOVA) box plots of the best-of-run solutions
test set error rates. The center box is bounded by the first and third quartiles of the data
distribution, with the median as the central line in the box. The notches surrounding
the median show the 95% confidence interval of this median. The whiskers above and
below the boxes represent the spread of the data value within 1.5 times the interquartile
range, with the + symbol showing outliers.

or slightly worse variance for the two other sets. This is an important result as
getting reproducible and stable solutions is often more interesting than finding
only infrequently a marginally better individual.

Taking a closer look at the error rates on the different sets in Table 4, impor-
tant differences can be noted between the train and validation set rates, on one
hand, and the test set rates on the other hand. The differences between the train
and test rates can be explained by an overfitting of the training data. But, it is
surprising to see the importance of the differences between the validation and
test rates. This may indicate that, because too many solutions are still tested
against the validation set at each generation, the risk of selecting solutions that
fit the validation set “by chance” is not negligible.

Figure 2 presents the one-way ANOVA box plots for the best-of-run tree
sizes. This time, it seems clear that the tested methods significantly reduce the
best-of-run individual tree sizes for all tested data sets. It is interesting to note
that the configurations with a validation set have generated significantly smaller
best-of-run individual tree sizes compared with the parsimony pressure only ap-
proach. This is expected given that the validation set is directly used in the
best-of-run individual selection process, while the parsimony pressure is used
only to limit the tree sizes during the runs. Also, the important size reduction of
the best-of-run solutions, especially noticeable with the combination of valida-
tion and parsimony pressure, is valuable when simplicity or comprehensibility is
necessary for the application at hand. Finally, taking a look at the mean effort
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Fig. 2. One-way analysis of variance (ANOVA) box plots of the best-of-run solutions
tree sizes

in Table 4, the reduction goes up to 50 % with the validation and parsimony
pressure approach, compared to the baseline effort.

5 Conclusion

In this paper, methodologies were investigated to improve GP as a learning algo-
rithm. More specifically, using the GP-based setup for binary classification, the
use of a validation set for selecting best-of-run individuals was tested, in order
to pick solutions that generalize well. The effect of a lexicographic parsimony
pressure was also tested, in order to avoid unnecessary complexity in the evolved
solutions. Experimental results indicate that the use of a validation set improves
a little the stability of the best-of-run solutions on the test sets, by maintaining
accuracy while slightly reducing variance in most cases. This is important given
the stochastic nature of GP, which can introduce important variations of the
results, from one run to another. Moreover, it was shown that mild parsimony
pressure applied during evolutions can sustain performance in general, while ef-
fectively reducing both solution size and effort. The combination of these two
approaches apparently gives the best of both worlds, by reducing the variance of
test set errors, simplifying drastically the complexity best-of-run solutions, and
cutting down effort by half.

As future work, still using a GP-based learning setup, it is planned to develop
new stopping criteria based on the difference between training and validation
set error rates. It is also planned to study the effect of changing the test cases
during the course of the evolution for GP-based learning, using methods such as
competitive co-evolution and boosting.
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Abstract. This paper extends a geometric framework for interpreting
crossover and mutation [4] to the case of sequences. This representation
is important because it is the link between artificial evolution and bio-
logical evolution. We define and theoretically study geometric crossover
for sequences under edit distance and show its intimate connection with
the biological notion of sequence homology.

1 Introduction

Evolutionary algorithms (EAs) mimic, in a simplified manner, natural evolution.
However, very few theoretical results are available which apply equally well to
both forms of evolutionary search.

One important cause of the lack of connection between evolutionary compu-
tation theory and evolutionary biology is that they focus on different kinds of
genotypes (different solution representations), namely DNA strands (variable-
length strings or sequences) and binary strings. Most importantly, even if DNA
strands and binary strings appear to be very similar at a first sight, the crossover
operator for binary strings is just a caricature of the biological recombination
acting on DNA strands. The main difference is that DNA strands align on the
basis of their contents (at meiosis) before exchanging genetic material and do not
align only positionally as it is the case for binary strings. Such an alignment is
flexible in that two DNA strands can stretch and fold to better align with each
other. Moreover, DNA strands do not need to be aligned on the extremities.
After alignment, the two DNA strands cut in one or more regions in which they
match well and exchange DNA segments. This last phase is present in crossovers
for EAs, in which, however, typically no alignment process based on content
takes place.

Geometric crossover and geometric mutation [4] are representation-
independent search operators that generalise by abstraction many pre-existing
search operators for the major representations used in EAs, such as binary
strings, real vectors, permutations and syntactic trees. They are defined in geo-
metric terms using the notions of line segment and ball. These notions and the
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corresponding genetic operators are well-defined once a notion of distance in the
search space is well-defined. This way of defining search operators as function of
the search space is opposite to the standard way [5] in which the search space
is seen as a function of the search operators employed. This viewpoint greatly
simplifies the relationship between search operators and fitness landscape and al-
lows different search operators to share the same search space thereby clarifying
their roles.

Is biological recombination geometric? In this paper we are able to answer this
question in the affirmative by extending the geometric framework mentioned
above to sequences under edit distance. This has the remarkable consequence
that the theory of geometric crossover applies to biological crossover as well,
bridging the gap between biological evolution and artificial evolution. Our results
reveal a deep connection between crossover for binary strings and biological
recombination, showing that standard EA crossover is less of a caricature than
it appears at first.

The paper is organised as follows. In section 2, we introduce the geometric
framework. In section 3, we show that in the case of sequences endowed with
edit distances geometric crossover is a form of homologous crossover which per-
forms the alignment on sequence contents before mixing genetic material. We
prove various properties of this crossover and, in section 4, extend it to weighted
alignments and alignment with gaps. In section 5 we argue that biological re-
combination is geometric and discuss the consequences of this.

2 Geometric Framework

2.1 Geometric Preliminaries

In the following we give necessary preliminary geometric definitions and extend
those introduced in [4] and [2]. The following definitions are taken from [6].

The terms distance and metric denote any real valued function that con-
forms to the axioms of identity, symmetry and triangular inequality. A simple
connected graph is naturally associated to a metric space via its path metric:
the distance between two nodes in the graph is the length of a shortest path be-
tween the nodes. Similarly, an edge-weighted graph with strictly positive weights
is naturally associated to a metric space via a weighted path metric.

In a metric space (S, d) a closed ball is the set of the form B(x; r) = {y ∈
S|d(x, y) ≤ r} where x ∈ S and r is a positive real number called the ra-
dius of the ball. A line segment (or closed interval) is the set of the form
[x; y] = {z ∈ S|d(x, z) + d(z, y) = d(x, y)} where x, y ∈ S are called extremes of
the segment. Metric ball and metric segment generalise the familiar notions of
ball and segment in the Euclidean space to any metric space through distance re-
definition. These generalised objects look quite different under different metrics.
Notice that a metric segment does not coincide to a shortest path connecting
its extremes (geodesic) as in an Euclidean space. In general, there may be more
than one geodesic connecting two extremes; the metric segment is the union of
all geodesics.
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We assign a structure to the solution set by endowing it with a notion of
distance d. M = (S, d) is therefore a solution space and L = (M, g) is the
corresponding fitness landscape. Notice that d is arbitrary and need not have
any particular connection or affinity with the search problem at hand.

2.2 Geometric Crossover Definition

The following definitions are representation-independent therefore crossover is
well-defined for any representation. It is only function of the metric d associated
with the search space being based on the notion of metric segment.

Definition 1. (Image set) The image set Im[OP ] of a genetic operator OP is
the set of all possible offspring produced by OP with non-zero probability.

Definition 2. (Geometric crossover) A binary operator is a geometric crossover
under the metric d if all offspring are in the segment between its parents.

Definition 3. (Uniform geometric crossover) Uniform geometric crossover UX
is a geometric crossover where all z laying between parents x and y have the same
probability of being the offspring:

fUX(z|x, y) =
δ(z ∈ [x; y])

|[x; y]|

Im[UX(x, y)] = {z ∈ S|fUX(z|x, y) > 0} = [x; y].

A number of general properties for geometric crossover and mutation have been
derived in [4].

2.3 Geometric Crossover Landscape

Geometric operators are defined as functions of the distance associated to the
search space. However, the search space does not come with the problem itself.
The problem consists only of a fitness function to optimise, that defines what
a solution is and how to evaluate it, but it does not give any structure on
the solution set. The act of putting a structure over the solution set is part of
the search algorithm design and it is a designer’s choice. A fitness landscape is the
fitness function plus a structure over the solution space. So, for each problem,
there is one fitness function but as many fitness landscapes as the number of
possible different structures over the solution set. In principle, the designer could
choose the structure to assign to the solution set completely independently from
the problem at hand. However, because the search operators are defined over
such a structure, doing so would make them decoupled from the problem at
hand, hence turning the search into something very close to random search.

In order to avoid this one can exploit problem knowledge in the search. This
can be achieved by carefully designing the connectivity structure of the fitness
landscape. For example, one can study the objective function of the problem and
select a neighbourhood structure that couples then distance between solutions
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and their fitness values. Once this is done problem knowledge can be exploited
by search operators to perform better than random search, even if the search
operators are problem-independent (as in the case of geometric crossover and
mutation).

Under which conditions is a landscape well-searchable by geometric operators?
As a rule of thumb, geometric mutation and geometric crossover work well on
landscapes where the closer pairs of solutions, the more correlated their fitness
values. Of course this is no surprise: the importance of landscape smoothness has
been advocated in many different context and has been confirmed in uncountable
empirical studies with many neighbourhood search meta-heuristics [7].

3 Geometric Crossover for Sequences

In this section, we extend the geometric framework to the case of sequences. In
particular we will focus on edit distances that associate with sequence homology.

3.1 Preliminaries: Sequences, Edit Distance and Alignments

A sequence is a variable length string of characters. In particular, DNA strands
are sequences of characters from the alphabet Σdna = {a, c, t, g}. The edit dis-
tance between two sequences is defined as the minimum number of edit oper-
ations – insertions, deletions, and substitutions – needed to transform the first
string into the second. The edit distance is a metric in that it respects all the
metric axioms. Hence, the space of sequences endowed with edit distance is a
metric space. There are a number of extensions to the simple edit distance such
as weighted edit distance, block-edit distance, reversals and transpositions dis-
tances (see Sections 4 and 5 for a discussion on their use). The edit distance
between two sequences is a measure of their syntactic dissimilarity. This syntac-
tic dissimilarity is intimately connected with the notion of sequence alignment.

An alignment of two sequences is obtained by first appropriately inserting
spaces (which we represent with dashes), either into or at the ends of the two
sequences, and then placing the two resulting sequences one above the other
so that every character or space in one sequence is aligned with a character or
space in the other sequence. The score of an alignment is the number of aligned
characters that are different in the two sequences. There may be more that one
optimum alignment between two sequences. The score of an optimum alignment
of two sequences equals their edit distance. Changing the scoring system, one can
obtain optimal alignments associated to weighted edit distances and block-edit
distances. Edit distances and optimal alignments can be computed efficiently
using dynamic programming.

The (edit) transcript T associated to an alignment q is a vector that specifies
what edit move to apply to parent 1 to reach parent 2 for each position. For
each alignment q there is only one transcript T and vice versa. For example,

T = (RIMDMDMMI) and q =
(
v-intner-
wri-t-ers

)
, where R, I and D stand for replace,

insert, delete and match, respectively, while M is a just place holder.
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3.2 Homologous Crossover and Geometric Crossover

Homologous crossover for sequences has been introduced by [8] in the context of
linear GP. We formalise and generalise it, we prove that it is geometric crossover
and then list some of its properties.

Definition 4. (Alignment-based homologous crossover operators)

1. Let Q be the set of all optimal alignments of two sequences S1 and S2 under
simple edit distance. Homologous crossover picks a random optimal align-
ment q ∈ Q with a given probability distribution over Q. Let S1 and S2 be
the two sequences aligned with gaps according to q.

2. Let l be the length of q and m be a mask drawn from {0, 1} with a given
probability distribution. m specifies for each position of q from which parent
to copy the corresponding character to produce an aligned offspring S3

3. The actual offspring S3 is obtained by remove the dashes from S3.

Example 1. If S1 = agcacaca and S2 = acacacta and the chosen optimal align-

ment is q =
(
agcacac-a
a-cacacta

)
then l = 9, S1 = agcacac-a and S2 = a-cacacta.

If m = 111100000 we obtain the offspring S3 = a-cacac-a. After gap removal
we obtain S3 = acacaca.

Theorem 1. All alignment-based homologous crossover operators are geometric
crossovers under edit distance.

Proof. An optimal edit transcript T contains a smallest set E of edit moves to
transform u in v. |E| = d(u, v). The edit moves in E are independent because
they can be applied in any order and transform u into v. Any intermediate
sequence z obtained by applying a subset E′ ⊆ E of edit moves to u is on a
shortest path between u and v because z is d(u, z) = |E′| moves away from u
and d(z, v) = |E \ E′| moves to v hence d(u, z) + d(z, v) = d(u, v). A mask m
selects a subset of edit moves Em ⊆ E from the transcript T to apply to u and
produce the offspring z. Hence z is on the shortest path.

Theorem 2. Every sequence O in the segment between two sequences P1 and P2
under edit distance is reachable by homologous alignment-based crossover applied
to the parent sequences P1 and P2.

Proof. We need to prove that for each O ∈ [P1, P2]ed there exists an optimal
alignment q of P1 and P2 and a mask m that applied to q gives O. We prove it
by constructing q and m given any O.

If O ∈ [P1, P2]ed then there exists a shortest path sp between P1 and P2 in
the search space of sequences endowed with the edit distance such that O ∈ sp.
Then there exists a transcript T such as all the edit moves in T are the same of
the set of edit moves that generate sp. The transcript T may comprise also one
or more M characters that do not correspond to any edit move. The transcript
T is optimal by construction because the number of edit moves in T (non-M
characters) is exactly ed(P1, P2).
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Given T , P1 and P2, it is possible to build the unique alignment q of P1 and
P2 associated with T . The alignment q is optimal because T is optimal. Consider
now the crossover mask m of the same length of the transcript T obtained by
setting at 1 the loci corresponding to those edit moves in the transcript T that in
the path sp transform P1 into O. The crossover mask m applied to the optimal
alignment q produces O.

Theorems 1 and 2 establish that a crossover is an alignment-based homologous
crossover if and only if it is a geometric crossover under simple edit distance.

3.3 Optimal Alignments and Segment Subsets

The family of crossovers introduced in the previous section can be seen as an
extension to sequences of the family of alignment-based crossovers for fixed-
length binary strings. [4] proved that for binary strings, uniform crossover, where
crossover masks are obtained by flipping n times a unbiased coin, picks offspring
with uniform probability distribution on the line segment between parents un-
der Hamming distance. In this section we introduce a generalisation of uniform
crossover based on masks for sequences and show that, unlike the binary string
case, this crossover, surprisingly, does not pick offspring uniformly in the segment
between parents under edit distances.

Definition 5. (Uniform alignment-based homologous crossover) Uniform
homologous crossover is an alignment-based crossover operator that chooses op-
timal alignments and crossover masks with uniform probability.

In Table 1, we enumerate all possible offspring under homologous crossover of
the sequences “vint” and “writ”. For these sequences there are three possible
optimal alignments. The edit distance between the sequences is 3. This can be
seen also from the edit transcript associated to each optimal alignment in which
there are 3 non-M characters. These characters describe the edit operations
and the location of their application on the alignment to transform the first
sequence into the second one. In the first column, all the possible crossover masks
are shown. For space limitations we report only the bits corresponding to the
three non-M symbols, thereby obtaining 8 effective crossover masks. The entry
at the intersection of a row (effective crossover mask) and a column (optimal
alignment) contains the offspring obtained by the application of the mask on
the alignment. Alignment-based uniform crossover returns any of the offspring
in the table at random with uniform probability ( 1

24 ). However, some offspring
can be generated by more than one alignment, and so they have higher chances
to be picked. “vint” and “writ”, for example, are produced with a probability
3
24 , while “vit”, “wrint”, “vrit” and “wint” are returned with probability 2

24 .
The image set of an optimal alignment q is the set of offspring that can be

generated by homologous crossover using any mask m over q.

Theorem 3. Consider the image sets Im(q1) . . . Im(qn) of homologous
crossover applied to all optimal alignment q1 . . . qn of the sequences P1 and P2.
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Table 1. Possible offspring under uniform alignment-based homologous crossover

Alignment 1 Alignment 2 Alignment 3
mask mm*m* mm*m* mmm*

transcript IRMDM RIMDM RRRM
parent 1 -vint v-int vint
parent 2 wri-t wri-t writ

000 -vint v-int vint
001 -vi-t v-i-t viit
010 -rint vrint vrnt
011 -ri-t vri-t vrit
100 wvint w-int wint
101 wvi-t w-i-t wiit
110 wrint wrint wrnt
111 wri-t wri-t writ

The union of Im(q1) . . . Im(qn) is [P1, P2] but they do not form a partition of
[P1, P2].

Proof. For theorem 1, the image set of any optimal alignment is subset of the
segment. For theorem 2, any sequence z in the segment [P1, P2] can be generated
by homologous crossover. Hence, there must exist at least an alignment such
as its image set includes z. This means that every point in the segment is at
least in Im(qi), hence the union of all Im(qi) is the segment [P1, P2]. Proof by
counterexample: example 2 shows that all Im(qi) do not form a partition of the
segment [P1, P2] because their intersections are non-empty.

Theorem 4. Uniform alignment-based homologous crossover is not the uniform
geometric crossover under edit distance.

Proof. Proof by counterexample: example 2 shows that the frequency of some
offspring sequences under uniform homologous crossover is higher than others.
So the probability is not uniformly distributed over the segment.

The non-uniformity of this crossover is the result of the same offspring sequence
being generated by multiple different optimal alignments. Parent sequences, for
example, are in this category because they can be generated by all optimal align-
ments using masks 0...0 and 1...1. Other offspring sequences can be generated
more than once when two optimal transcripts share non-M characters at the same
positions. For example, if two transcripts have a D at position 1, then the mask
0X...X where X...X is either 0...0 or 1...1 will produce the same offspring with
both alignments. The mask 1X...X will have the same effect.

3.4 Bounds on Offspring Size

In this section we explore how offspring and parent sizes are related in homolo-
gous crossover.
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Theorem 5. Given two parent sequences P1 and P2 of length l1 and l2 with
l1 ≤ l2 and edit distance ed, the length l3 of any offspring sequence O obtained
by homologous recombination is bounded as follows:

1. Edit distance ed known: (l1 + l2 − ed)/2 ≤ l3 ≤ (l1 + l2 + ed)/2
2. Edit distance ed not known: l1/2 ≤ l3 ≤ l1/2 + l2
3. Parents of same length l1 = l2 = l: l/2 ≤ l3 ≤ 3l/2
4. Non-empty parents imply non-empty offspring

Proof. Trivial edit distance bounds: (i) d(a, b) ≥ |l(a) − l(b)| and (ii) d(a, b) ≤
max(l(a), l(b)). From bound (i) applied to P1 and P3: d(P1, P3) ≥ |l1− l3| that
breaks into two cases: (1) l1−l3 ≤ 0 → l1 ≤ l3 ≤ d(P1, P3)+l1 (worst case upper
bound) (2) l1 − l3 ≥ 0 → l1 − d(P1, P3) ≤ l3 ≤ l1 (worst case lower bound).
Analogously, applying bound (i) to P2 and P3 we obtain other two alternative
cases: (3) l2 − l3 ≤ 0 → l2 ≤ l3 ≤ d(P2, P3) + l2 (worst case upper bound) (4)
l2 − l3 ≥ 0 → l2 − d(P2, P3) ≤ l3 ≤ l2 (worst case lower bound).

Let us consider the upper bound for l3. Both the conditions (1) and (3) must
hold true, so 2l3 ≤ d(P1, P3) + d(P2, P3) + l1 + l2. For all P3: d(P1, P3) +
d(P2, P3) = d(P1, P2) = ed. Hence for all P3: l3 ≤ (l1 + l2 + ed)/2. If the
distance ed between parents P1 and P2 is unknown we can use bound (ii) to
bound it: ed ≤ max(l1, l2) → ed ≤ l2. Hence for all P3 in the worst case we
have: l3 ≤ l1/2 + l2. In case l1 = l2 = l we have for all P3: l3 ≤ 3l/2.

Let us consider the lower bound for l3. Both the conditions (2) and (4) must
hold true, so l1 + l2 − (d(P1, P3) + d(P2, P3)) ≤ 2l3. For all P3: d(P1, P3) +
d(P2, P3) = d(P1, P2) = ed. Hence for all P3: (l1 + l2 − ed)/2 ≤ l3. If the
distance ed between parents P1 and P2 is unknown we can use bound (ii) to
bound it: ed ≤ max(l1, l2) → ed ≤ l2. Hence for all P3 in the worst case we
have: l1/2 ≤ l3. In case l1 = l2 = l we have for all P3: l/2 ≤ l3.

Homologous crossover cannot produce empty offspring from non-empty par-
ents. This can be shown by using the second inequality: l1/2 ≤ l3 ≤ l1/2 + l2.
Independently from the distance between parents the minimum lower bound of
the length of any offspring is half of the length of the shortest parent. When
such parent is not empty (l1 ≥ 1) then l3 ≥ 1/2. Since the length is an integer
we have l3 ≥ 1. So even for parents of length 1 the offspring are non-empty.

Under geometric crossover, the more different the parents are, the more
“unrelated”, or “innovative”, the offspring become. From the previous theorem,
the size of the offspring is bounded by: (l1 + l2 − ed)/2 ≤ l3 ≤ (l1 + l2 + ed)/2.
Hence, the bigger the difference between the parents the bigger the range of the
size of possible offspring. Note, however, that when using weighted edit distances
it is possible to create situations were an empty offspring can be returned.

4 Extensions of Homologous Crossover

4.1 Weighted Edit Distances and Geometric Crossover

Extending homologous crossover to the case of weighted edit distances is cru-
cial to capture more realistic details of real biological sequences. Weighted edit
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distances allow to specify relative preferences in the alignment before recombina-
tion such as character mismatches vs. sequence interruptions (spaces), positional
preferences (for example, matches at the extremities vs. matches at the centre of
the sequences) or preferences on the mismatching pairs (for example, preferring
a mismatch (a, t) to a mismatch (a, c)).

The following theorem is a very general and useful result that connects
weighted edit moves for any solution representation and metric spaces.1

Theorem 6. Any weighted edit distance with strictly positive weights on edit
moves is a metric.

Proof. A space of configurations endowed with an edit distance with strictly
positive weights can be represented by a weighted graph in which nodes are
syntactic configurations and weighted edges represent (reversible) weighted edit
moves transforming one configuration into neighbour configuration. Any graph
with strictly positive weights on edges is a metric space [6] hence an edit distance
with strictly positive weights on edit moves, that is isomorphic to such a graph,
is a metric.

The cost of a weighted alignment is the sum of the weights associated to each
character alignment. The weight of each couple of characters is symmetric and
matching characters have weight 0. An optimal alignment is an alignment with
minimal cost. The cost of the optimal weighted alignment between two sequences
equals their weighted edit distance where the edit moves allowed correspond to
the set of couple of characters corresponding with their alignment weights.

The following theorem extend the geometricity result of homologous crossover
to weighted edit distances and weighted alignments.

Theorem 7. Alignment-based homologous crossover on the optimal alignments
under weighted edit distance dw is geometric crossover under dw.

Proof. An optimal edit transcript T contains a set E of edit moves to transform
u in v whose cost w(E) =

∑
e∈E we is minimal. The weighted edit distance

is dw(u, v) = w(E). The edit moves in E are independent because they can
be applied in any order and transform u into v. Any intermediate sequence z
obtained by applying a subset E′ ⊆ E of edit moves to u is on a shortest weighted
path between u and v because dw(u, z) = w(E′) and d(z, v) = w(E \ E′)=w(E)-
w(E’) hence d(u, z) + d(z, v) = d(u, v). A mask m selects a subset of edit moves
Em ⊆ E from the transcript T to apply to u and produce the offspring z. Hence
z is on the shortest path.

4.2 Gaps and Geometric Crossover

In this section we extend homologous crossover to the case of edit distances
based on replacement move and a block ins/del move. This edit distance allows
1 This is a fairly simple result. However, it appears that this is not been proved in pub-

lished literature, leading to significant confusion, particularly in the bio-informatics
literature, in which edit distances and scoring matrices are extensively used.
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to specify preference to few big gaps against many small gaps in the alignment
before recombination and allows to model loops in the alignments.

Theorem 8. Alignment-based homologous crossover with one locus for each en-
tire gap on the optimal alignments under weighted edit distance with block moves
dbw is geometric crossover under dbw with convex weight gap model.

Proof. Let us consider a weighted block ins/del edit move such as its weights
depends only on the length of the block in a way that shorter blocks have smaller
cost per length unit: l1 < l2 → w(l1)/l1 > w(l2)/l2. An optimal edit transcript
must necessarily comprise the largest block ins/del edit move. The crossover
mask has to treat each edit move as a unity: for block edit moves there must be
only one locus in the crossover mask. The rest follows from theorem 7.

5 Bridging Natural and Artificial Evolution

In this section we discuss the feasibility of homologous crossover as a model of
biological recombination and its implications.

Is biological recombination geometric? Most of pre-existing recombina-
tion operators for the most-used representations are geometric. So this ge-
ometric property unifies by abstraction across representations the notion of
“crossoverness” emerged experimentally over the years. All geometric crossovers
do the same type of search (convex search). This question if answered affirma-
tively would show a deep unity in the way EAs and biological evolution search
and would allow to apply the geometric framework to study both natural and
artificial evolution jointly casting a computational and geometric perspective on
natural evolution.

Many details of real biological recombination are unknown and it is focus of
active research to elicit them. There are various models for studying different
aspects of biological evolution at different levels of granularity.

At the genetic level, the model of homologous recombination based on fixed-
size strings used in population genetics, is a simple extension of the traditional
crossover for binary strings to the multi-valued case and it is geometric under
Hamming distance. Unequal crossover at a genetic level happens when the ho-
mologous alignment of the strands is not perfect. This can be the result of an
error in the alignment due to environmental noise (this can be considered as
a mutation) or being one of the possible best inexact alignments under edit
distance at the level of genes. In this case unequal crossover would be geometric.

The reason why strands tend to align according to the edit distance can be
understood at a molecular level. Our working hypothesis is that an edit dis-
tance, weighted and based on edit moves such as insertion/deletion (to model
frame-shift), replacement (to model base mismatch), block-insertion/deletion
(to model folds/loops), block-reversal (to model subsequence inversion) and
block-transposition (to model subsequence transposition), is expressive enough
to model the resulting configuration obtained at the equilibrium of all the forces
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that lead to the inexact homologous alignment of two chromosomes at a molec-
ular level (before crossing over). The notion of minimum distance connects nat-
urally with the notion of optimal alignment (best trade-off among all forces
involved, or chemical equilibrium) of two macromolecules (chromosomes) that,
as any other chemical reaction, tends to evolve toward the state of “minimum
free energy”. In summary:

1. the geometric crossovers associated with edit distances naturally capture the
notion of homology, or inexact alignment based on the sequences contents.

2. there is a natural parallel between weighted edit distances and DNA pairing
up at the molecular level because the weights on edit moves can be inter-
preted in chemical terms as attraction and repulsion forces.

3. there are a variety of edit distances that allow to show that pre-existing
model of biological crossovers and many variants are still geometric. This
suggests that assuming that biological recombination is geometric is reason-
able even in the lack of full-knowledge about all its details.

Is the natural landscape smooth? The natural adaptive landscape of a pop-
ulation is not static but changes over time in response to environmental changes
and in response to the change in the population composition adapting to the new
environment due to evolutionary forces. Evolution (adaptation) happens when
the adaptive landscape is non-flat.

Despite the inherent dynamical character of the natural adaptive landscape,
it has a smooth trend: most of the mutations are neutral [9], do not affect the
phenotype or quasi-neutral in that they affect the phenotype marginally and
so its fitness. Very rarely a single mutation is lethal, creating “cracks” in the
landscape. The landscape may be rugged and may present various neutral paths
but the overall trend is smooth and when evolution (adaptation) is in progress,
non-flat. Hence, we can safely state that the closer genotypes under edit dis-
tance (mutation) the more correlated their fitness values. Indeed, this is the
same principle on which bio-informatics is firmly based upon: similarity of geno-
types allows us to infer similarity in the phenotype (hence, in fitness) without
doing any experimental work except searching databases of known genotypes by
homology [1].

Geometric biological operator + smooth natural landscape = quick
adaptation. What is the fitness function to optimise in case of natural evo-
lution? Natural evolution, seen as a search algorithm, is trying to optimise the
fitness function that is obtained from the adaptive landscape by removing the
space structure (see section 2). While doing this optimisation, the fitness function
is constantly changing, because the adaptive landscape is constantly changing
under the effect of population change due to evolution (optimisation) itself. The
evolution (optimisation) ends when the fitness landscape becomes flat and the
fitness function becomes constant. This means that the population is completely
adapted to the environment. Hence, the performance of biological evolution, seen
as a search algorithm, is in terms of speed of adaptation.
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If one accepts that (i) biological recombination is geometric under edit dis-
tance and that (ii) the natural landscape has a smooth trend then, since smooth-
ness of the landscape is the condition we need to enforce to the landscape to be
well-searched by geometric crossover and geometric mutation, the logical con-
clusion is that biological recombination and mutation are well-matched with
the natural fitness landscape. So their performance in terms of adaptation is ex-
pected to be much better than pure random search. This is to say that biological
evolution is very efficient at doing adaptation.2

6 Conclusions

In this paper we have extended the geometric framework to the important case
of sequences. We have given a number of theoretical results and started investi-
gating the hypothesis that biological recombination is geometric and discussed
its consequences.
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Abstract. This paper introduces Incentive Method to handle both hard
and soft constraints in an evolutionary algorithm for solving some multi-
constraint optimization problems. The Incentive Method uses hard and
soft constraints to help allocating heuristic search effort more effectively.
The main idea is to modify the objective fitness function by awarding
differential incentives according to the defined qualitative preferences, to
solution sets which are divided by their satisfaction to constraints. It does
not exclude the right to access search spaces that violate some or even all
constraints. We test this technique through its application on generating
solutions for a classic infinite-horizon extensive-form game. It is solved
by an Evolutionary Algorithm incorporated by Incentive method. Ex-
perimental results are compared with results from a penalty method and
from a non-constraint setting. Statistic analysis suggests that Incentive
Method is more effective than the other two techniques for this specific
problem.

1 Introduction

Many optimization problems involve constraints. Hard constraints describe fea-
sibility of solutions. Soft constraints describe preferences, which often encode
our partial knowledge about good solutions. The best known constraints han-
dling techniques used in evolutionary algorithms include: penalty methods; repair
algorithms; multi-objective functions; and co-evolutionary models. The penalty
method, penalizes infeasible (or unfavorable) individuals. In general, it transforms
a constrained optimization problem max f(x) subject to w(x) ≤ C to an uncon-
strainedproblemmaxY (x) = f(x)−Penalty(x) by defining the Penalty function.
A death penalty method would reject infeasible individuals. Repair methods use
domain specific operators to modify infeasible individuals to feasible ones. They
have been used for solving many combinatorial optimization problems.

In some problems, candidate solutions can be classified into three qualita-
tively different sets: feasible, infeasible and preferred. No matter how many soft
constraints a candidate solution satisfies, its satisfaction to hard constraints still
has the first priority. Those candidate solutions that satisfy hard constraints,
are preferable differently by soft constraints. For such problems, it is sometimes
difficult to define penalties for penalty methods or to repair solutions to satisfy
hard constraints, while taking soft constraints into consideration. It is also hard
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to decide which of the many soft constraints can be sacrificed to ensure the hard
constraint to be satisfied.

This paper presents Incentive Method as a complementary method to penalty
and repair methods, hybrid methods possible, for handling multi constraints in
evolutionary algorithms. By introducing Incentive Method, we attempt to deal
with each type of constraints individually, by differentially rewarding individuals
depending on the level of constraints they satisfy. Moreover, Incentive Method
is designed to enable us to integrate extra problem-specific knowledge into fit-
ness functions. Constraints are used to guide the search, as opposed to being
seen as obstacles to the search, a view deeply rooted in constraint satisfaction
research [7].

We examine the performance of Incentive Method on an infinite extensive-
form game: Basic Alternating-Offers Bargaining Problem. Firstly, experimen-
tal outcomes for this application by using Evolutionary Algorithms integrated
by Incentive Method will be measured against game-theoretic solutions; Sec-
ondly, such experimental outcomes will further be compared with outcomes by a
Penalty Method and by an evolutionary algorithm without constraint handling
technique.

2 The Incentive Method

An optimization problem Φ, has hard constraint(s) that defines feasibility of
solutions, and soft constraint(s) that defines preference properties in solutions.
Let S be the search space and E ⊆ S be the set of feasible solutions. Further,
let P ⊆ E be the set of feasible solutions that violate no soft constraints at all.
The objective is to find x ∈ S to optimize f(x) where x can be in the form of a
number, a vector or a computer program.

Definition 1: Incentive Method

R(x) =

⎧⎨
⎩

f(x) + C if x ∈ P
g(x) if x ∈ E ∩ x /∈ P
h(x) if x /∈ E

(1)

To formulate the above problem Φ under Incentive Method, one must define
functions g and h for evaluating the fitness of an individual. Functions g and h
must satisfy the condition h(x) < g(x) < f(x) + C where C is a constant. Note
that C is not strictly necessary; it is included so that g and h do not have to re-
turn negative values to meet the above condition. Problem-dependent knowledge
is required to define g(x) and h(x) in Incentive Method. Effective definitions of
g(x) and h(x) will help the search to allocate its effort more effectively. There-
fore, the definition of g(x) and h(x) can be seen as a burden on users, but it can
also be seen as an opportunity for channeling domain knowledge into the search
method.

The conditions in Equation (1) make sure that solutions sets are strictly
ordered, so that no matter how many soft constraints a feasible solution violates,
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it is still better than an infeasible one. A solution x that violates no constraints
at all is preferred to a solution x′ that violates one or some soft constraints, no
matter how poor x is, or how good x′ is, according to f . The incentive Method
does not prevent a search from considering infeasible regions of the search space.
This is because infeasible solutions may contain valuable genetic material that
is needed for finding global optimal solutions. However, the fitness measure will
discourage candidate solutions in infeasible regions to produce offspring.

3 A Bargaining Problem

An optimization problem with both hard and soft constraints is chosen as a test-
bed to examine the quality and performance of Incentive Method. It is a classic
game, the Alternating-Offers bargaining problem which can be formulated as an
optimization problem and it has both hard and soft constraints.

The Basic Alternating-Offers Bargaining Problem modeled and solved by
Rubinstein [5] describes a bargaining scenario wherein participant A starts by
making a proposal to his counterpart B on dividing a cake π = 1 at time of
0. B has options to accept this offer immediately or to make a counter offer at
time 1. Similarly, participant A can choose to accept the offer immediately, or
to make a counter offer at time 2. The bargaining process ends once a proposal
is accepted by the counterpart. For convenience, we denote an offer xi proposed
by player i for himself and xj = 1 − xi for the other.

An offer simply takes the form of a percentage of the cake, which is a number
between 0 and 1. For the game to be interesting, utility deteriorates over time
for both players, which motivates the players to make agreements as soon as
possible. For the same share, it is worth more in round t than in round t + 1,
round t + 2, etc. Player i’s discount factor δi ∈ (0, 1) is his bargaining cost per
time interval, δi ≡ e−ri where ri is the player i’s discount rate. If an agreement
is reached at time t, the payoff pi gained by player i who has a share xi from
this agreement is determined by the payoff function: pi = xiδ

t
i . This problem’s

game-theoretic solution is that the first player obtains:

x∗
A =

1 − δB

1 − δAδB
(2)

The second player obtains the rest of cake, (1 − x∗
A). This solution is called the

Perfect Equilibrium Partition (P.E.P). Game-theoretic analysis and proof can
be found in [5] and [4].

4 Experiments Design

4.1 Overview of Experimental Design

We solve this bargaining problem by evolutionary computation, specially co-
evolution algorithm. The goal is to evolve competitive strategies. Co-evolution
has been demonstrated to be effective for solving finite extensive-form games by
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Koza [1] and a repeated normal-form game by Miller [2]. Tsang and Li [6] used a
constrained objective function in a co-evolutionary system EDDIE/FGP, which
aids investors to seek dealing rules in financial market.

In the evolutionary system for this problem, players are assumed to learn
bargaining strategies through trial-and-error playing. It is a two-population co-
evolving system, each population representing a player. They are called Popula-
tion A for the player A and Population B for the player B. This enables different
strategies to be evolved as the first player may have a first-move advantage [4].
It also allows extensibility for potential differences between the two players (for
example, one player may have more information than the other) in future work.
Each population consists of a set of individuals, each of which is the evolving
part of a bargaining strategy.

During the co-evolution process, every individual of the population A bargains
with every individual in the population B, if the individual meets the basic
criteria (hard constraint) that it makes offers and counteroffers between 0 and 1.
The game fitness of an individual is the average payoff of its corresponding
strategy’s bargaining outcomes. On the occasion when an individual does not
fit the basic criteria, a value based on its structure is calculated as (part of) its
fitness (see Subsection 4.3).

Individuals of a population independently undergo natural selection based on
their performance (fitness). Better performed individuals have higher probability
to be taken as “raw materials” which will be genetically modified in order to
breed new individuals for the forthcoming generation. Newly created individuals
will bargain with the updated counterpart population that has gone through
a similar evolutionary process. Note that the same genetic operators (selection
method, crossover rate and mutation rate) are employed for both populations.
Co-evolution pushes individuals of both populations to continue improving over
time.

4.2 Genetic Programming Representation

Since strategies are represented by functions in theoretic solutions, we use Ge-
netic Programming (GP) [1] which is an easy way to cope with function-based
representation. Although Rubinstein’s solution [5] does not involve time at all,
time can be an important element in real life bargaining. To limit our search
space, we assume that player i bids bi at time t:

bi = gi × (1 − ri)t (3)

where gi is a function generated by genetic programming, an individual in a pop-
ulation. The part of (1−ri)t guarantees that players bid decreasing shares of the
cake while time elapses, which is considered to be practical. A gi is constructed
with the function set {+, - , × and ÷ (protected) } and the terminal set {1, -1,
δi, δj }. By changing the function and terminal sets, we could model different
strategies. For example, if adding time t into the terminal set, we would allow
the system to generate time-dependent strategies beyond what is restricted by
Equation (3).
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A strategy determines what action (acceptance or making a new proposal) it
takes at time t. The following rule determines whether a strategy si accepts or
rejects a proposal (1 − xj , xj) at time t:

si =

⎧⎪⎪⎨
⎪⎪⎩

accept : xi = 1 − xj

if (1 − xj)δt
i ≥ bi(t + 1)δt+1

i

counteroffer at (t + 1) : xi = bi(t + 1)
if (1 − xj)δt

i < bi(t + 1)δt+1
i

(4)

This means that when a player with strategy si receives an offer (1 − xj) from
his opponent who asks xj for herself, he will compare the payoff (1 − xj)δt

i of
this offer with the payoff that he will get should his counter offer bi(t + 1) be
accepted in the next round. If the later is not higher than the former, then the
offer will be accepted.

4.3 Design of Fitness Function Using Incentive Method

Success of evolutionary algorithms relies on appropriate fitness measures that
evaluate performance of individuals. In order to define g(x) and h(x) in
Equation (1), favorable features of solutions in the above problem are studied.
Incentives are defined based on these features. The alternating-offer bargaining
problem has a hard constraint regarding feasibility: any proposal of division of
the cake must be within the size of cake. Any offer that does not obey this con-
straint is infeasible. Besides, the common sense tells that a player has a relatively
higher discount factor (lower cost) is in a stronger position to bargain. This is
because each round of delay would cost him less than his opponent. We list the
hard constraint C1 and two soft constraints C2 and C3:

C 1. Any proposal on the partition of a cake should be a value within the
range xi ∈ (0, 1];

C 2. Everything else being equal, the higher discount factor a player i has,
the larger share xi he can obtain.

C 3. Everything else being equal, the higher discount factor the opponent j
has, the lower share xi a player i can get.

Sensibility Measure and Evaluation of Attribution. Obviously not all
genetic programs meet the above constraints, especially when the genetic pro-
grams are created randomly at the initial generation. Sensibility Measure SM
is invented to measure whether a genetic program characterizes C2 and/or C3.
Let gi(p, q) be the instantiation of the program gi with δi being substituted by
p and δj being substituted by q. With an arbitrary real numbers α ∈ (0, 1).

Definition 2: Sensibility Measure of a genetic program gi

SMi(δi, δj , α) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− gi(δi,δj)−gi(δi×(1+α),δj)
gi(δi,δj)

if δi × (1 + α) < 1;
gi(δi,δj)−gi(δi×(1−α),δj)

gi(δi,δj)
if δi × (1 + α) ≥ 1;

(5)
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SMj(δi, δj , α) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

gi(δi,δj)−gi(δi,δj×(1+α))
gi(δi,δj)
if δj × (1 + α) < 1;

− gi(δi,δj)−gi(δi,δj×(1−α))
gi(δi,δj)

if δj × (1 + α) ≥ 1;

(6)

SM describes C2 and C3 in a mathematic manner: when player i’s discount factor
increases from δi to (δi × (1+α)) ∈ (0, 1), the genetic program gi that positively
correlates to δi should be rewarded. The amount of reward depends on the degree
of the increment from gi(δi, δj) to gi(δi×(1+α), δj). In the case of α is too large to
make δi × (1+α) satisfy the definition δ ∈ (0, 1), we decrease the discount factor
δi to δi ×(1−α). The value of gi should decrease accordingly. So gi(δi, δj) should
be larger than gi(δi × (1 − α), δj). When taken account into the opponent j’s
discount factor, the genetic program gi that negatively correlates to δj should be
rewarded. SMj(δi, δj , α) returns such rewards. In short, positive values returned
from both SMi(δi, δj , α) and SMj(δi, δj , α) mean that the genetic program gi

satisfies the constraints C2 and C3, respectively.

Definition 3: Evaluation of Attribution (ATT ) defines the incentive value to a
genetic program gi whose Sensibility Measures are SMi and SMj. The incentive
is calculated by gi’s satisfaction to constraints.

ATT (i) =

⎧⎪⎪⎨
⎪⎪⎩

1
if SMi(δi, δj, α) ≥ 0

−e
1

SMi(δi,δj ,α)

if SMi(δi, δj , α) < 0

(7)

ATT (j) =

⎧⎪⎪⎨
⎪⎪⎩

1
if SMj(δi, δj , α) ≥ 0

−e
1

SMj(δi,δj ,α)

if SMj(δi, δj , α) < 0

(8)

When SMi or SMj returns positive values, meaning that they satisfy soft con-
straints, ATT (i) or ATT (j) is the highest incentive 1. When SMi or SMj return
negative values, ATT gives an incentive less than 0. The exact incentive value
depends on how close SMi or SMj is to 0. The closer SMi or SMj to 0, the
more reward is given by the ATT (i) or ATT (j). Here we adopt the function
−e

1
SM to control this incentive rewarding algorithm. For an negative value of

SM, ATT is always negative in the range between (−1, 0). For SM → 0−, ATT
goes quickly to near 0. For SM < −1 and SM → −∞, ATT goes quickly to −1.
The function −e

1
SM is problem-dependent and is not the only way to implement

the idea of incentive rewarding. It is chosen here as its simple structure.

Fitness Function. A genetic program gi that satisfies the constraints C1 is
converted to a bargaining strategy si by the function (3) and (4). Strategies
pair-wisely play the alternating-offers bargaining game.
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Definition 4: Game Fitness GF (si) of si is the average payoff of a strategy
si gained from bargaining against every bargaining strategy in its opponent
j’s population which has a set (Sy) consisting of the number of n bargaining
strategies where the integer n is an experimental parameter.

GF (si) =

∑
j∈Sy

psi→sj

n
(9)

where psi→sj is the payoff obtained by the strategy si from an agreement with
the strategy sj . GF (si) estimates the bargaining competence of the strategy si

in its generation.

Definition 5: Fitness Function F (i) incorporated with Incentive Method deter-
mines the fitness of an individual gi whose corresponding strategy is si, whose
Sensibility Measures are SMi and SMj and whose Evaluation of Attribution are
ATT (i) and ATT (j).

F (i) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

GF (si) + 3
if gi ∈ (0, 1] ∩ SMi > 0 ∩ SMj > 0

GF (si) + ATT (i) + ATT (j)
if gi ∈ (0, 1] ∩ (SMi < 0 ∪ SMj < 0)

ATT (i) + ATT (j) − e
−1
|gi|

if gi /∈ (0, 1]

(10)

This is the top-level evaluation using Incentive Method, applied to all individuals
in both populations. A little reflection should convince the readers that, in F (i),
GF (si) + 3 > GF (si) + ATT (i) + ATT (j) > ATT (i) + ATT (j) − e

−1
|gi| . Genetic

programs that satisfy all three constraints are rewarded a bonus of 3 plus the
game fitness GF (si). This will ensure that they dominate the rest who fail to
meet all constraints and then to encourage desired genetic programs to prop-
agate. Individuals that satisfy the constraint C1, but do not meet C2 and/or
C3, are still eligible for playing bargaining games. Their fitness are the game
fitness adding a value (ATT (i)+ ATT (j)) that reflects how close they meet any
of the two soft constraints. Such individuals that violate the constraint C1 are
not eligible for entering bargaining games. Instead they are allocated a fitness
solely based on the structures of their genetic programs by SM and ATT mea-
surements. Their fitness is definitely lower than any individual that satisfies at
least, the constraint C1.

4.4 Parameters of Co-evolving System

In general, a co-evolutionary system is more sensitive to the values of genetic
operators than an evolutionary system. Even a slight modification on either
population will duplicate its effects due to dynamic properties of the landscapes.
So crossover and mutation rates in co-evolutionary systems should be smaller
than normally taken values by evolution. This concept is also supported by
our experimental results. A rang of crossover and mutation rates are tested to
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reduce their bias on experiential results. Our system performs relatively stable
while the crossover rate is within 0 to 0.1 and the mutation rate ranges from
0.01 to 0.3. Jin et al [3] explains how to choose crossover and mutation rates for
a co-evolutionary system through a case study.

In a typical run, the fitness of two populations tends to be stabilized before
200th generation. To ensure the stabilization and limited by computational re-
sources, we terminate runs at the 300th generation. Each population has 100
individuals.

5 Experimental Results and Observations

5.1 Using Incentive Method

We select total 25 game settings (game parameters) for testing, δA, δB ∈
{0.1, 0.3, 0.5, 0.7, 0.9}. The combinations of selected δA and δB evenly distributed
over the space δA × δB. 100 runs are conducted for every pair of (δA, δB). It is
considered to be statistically sufficient to collect samples.

In one run, xA is player A’s share from an observed agreement made by the
pair of the best-of-generation (highest fitness) strategies, one from the population
A and another from population B, at the end of evolution (300th generation in
our experiments). x̄A is the average of 100 xAs from 100 runs with the same (δA,
δB) but with different random sequences. The results of x̄B is not reported here
because it is merely the complement of x̄A.

Two methods are taken into investigation of experimental results. (1) For all
test results, a T-test over the hypothesis (x∗

A − x̄A = 0) is done. The result of
the t-test shows that there is no statistically significant difference between the
experimentally observed x̄A and P.E.P, with 95% level of confidence. (t Critical
Value two-tail = 2.06 and t Statistic Value = −0.85) (2)Two types of variations
are defined to measure the difference between x∗

A and experimentally observed
x̄A of a given game setting.

Definition 6: Absolute Variation (av) is an unsigned difference between the P.E.P
x∗

A and experimentally observed x̄A for a given (δA, δB).

av = |x∗
A − x̄A| (11)

Definition 7: Relative Variation (rv) is an unsigned relative increment of x̄A over
x∗

A.

rv =
|x∗

A − x̄A|
x∗

A

=
av

x∗
A

(12)

Results of the absolute variation by Incentive Method are given in Table 1.
They are very small variations from P.E.P, especially for game settings reported
in Table 3. That of relative variation by Incentive Method can be calculated
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Table 1. Absolute Variation by Incentive Method (x∗
A is the P.E.P. x̄A is the experi-

mental mean of Player A’s shares from agreements by the best-of-generation individuals
at the 300th generations of 100 trials)

Incentive Method (|x∗
A − x̄A|)

δB value δA = 0.1 δA = 0.3 δA = 0.5 δA = 0.7 δA = 0.9
0.1 0.0135 0.0715 0.0520 0.0308 0.0098
0.3 0.2775 0.2308 0.1741 0.1075 0.0371
0.5 0.1606 0.0963 0.0087 0.0841 0.1643
0.7 0.0002 0.0258 0.1016 0.2287 0.1266
0.9 0.0821 0.0280 0.0780 0.0001 0.0122

according to the definition of relative variation from Table 1 1. The results of rv
are omitted here due to the page limitation. The results from both the T-test
and two variation measures demonstrate that the evolutionary system combining
Incentive Method has produced results that approximate to Perfect Equilibrium
solutions in majority cases.

Having obtained a general view on the results, we further look into the ef-
fectiveness of Incentive method. The questions to be answered are: whether
Incentive method outperforms some other constraint-handling techniques, for in-
stance, widely applied Penalty method? Does Incentive Method produce better
results than an evolutionary algorithm having no constraint handling technique?

5.2 Using a Penalty Method

To evaluate the performance of Incentive Method, a control experiment using a
penalty method is conducted. Another fitness function F (i)′ is defined to deal
with the hard constraint: xi ∈ (0, 1]. To be fairly comparable to the fitness
function F (i) in which Incentive Method is used, F (i)′ implements the penalty
function for infeasible individuals is ATT (i) + ATT (j) − e

−1
|gi| .

Definition 8: Fitness Function F (i)′ incorporated with Penalty Method

F (i)
′
=

⎧⎪⎪⎨
⎪⎪⎩

GF (si) + ATT (i) + ATT (j)
if gi ∈ (0, 1]

ATT (i) + ATT (j) − e
−1
|gi|

if gi /∈ (0, 1]

(13)

1 The reasons that we adopt two variation measures are that (i) for Absolute variation,
|x∗

A − x̄A| = |x∗
B − x̄B | is true. But for relative variation, av

x∗
A

= av
x∗

B
is always not

hold. Relative variation may produce two different results for one run with the
same set of all parameters;(ii) absolute variation alone is not enough to express the
variation on the base of the target point P.E.P. For example, two sets of results
(x∗

A = 0.05, x̄A = 0.06) and (x∗
A = 0.95, x̄A = 0.96), both have the same absolute

variation av = 0.01, but the former set has a 0.17 increment based on x∗
A and the

latter set has only a 0.01 increment based on x∗
A. In this sense, the relative variation

is more informative and indicative.
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The same sequence of random seeds, the same genetic operators and the same
sets of discount factor pairs as before are used in this experiment. Fitness func-
tion is F (i)′. As before, each game setting runs 100 times. The experimental
results on absolute variation are shown in Table 2.

We can see from Table 1 and Table 2 that there are 17 out of the total 25 game-
parameter combinations for which the incentive method outperforms the penalty
one; one has the same absolute variation for both methods; for the rest 7, the
penalty one does better. Moreover, for certain combinations of game parameters
(δA, δB), the evolutionary algorithm is unable to approach the P.E.P equilibri-
ums. Notice that this is not due to the method used, neither Incentive Method
nor Penalty Method, but only depends on the combinations of game parameters.
For example, the exactly corresponding cells in both absolute variation by Incen-
tive Method (Table 1) and absolute variation by Penalty Method (Table 2) meet
av > 0.15 condition. In the form of (δA, δB), these cells are (0.1, 0.3)(0.1, 0.5)(0.3,
0.3)(0.5, 0.3)(0.7, 0.7)and (0.9, 0.5). So the factor(s) of approximation failures is
independent of the constraint handling technique chosen. We therefore exclude
these failed cases from the performance comparison of two methods, which are
only compared on successful-tested game-parameter combinations. Table 3 and
Table 4 list the average absolute and relative variations of the incentive method
and the penalty method, grouped by three conditions, namely av(rv) < 0.15,
av(rv) < 0.10 and av(rv) < 0.05. A clear pattern displays: for all these three

Table 2. Absolute Variation by Penalty Method (x∗
A is the P.E.P. x̄A is the experimen-

tal mean of Player A’s shares from agreements by the best-of-generation individuals at
the 300th generations of 100 trials)

Penalty Method (|x∗
A − x̄A|)

δB value δA = 0.1 δA = 0.3 δA = 0.5 δA = 0.7 δA = 0.9
0.1 0.0909 0.0722 0.0526 0.0323 0.0110
0.3 0.2784 0.2308 0.1765 0.1139 0.0411
0.5 0.1625 0.0986 0.0058 0.0813 0.1555
0.7 0.0066 0.0238 0.1025 0.2356 0.0855
0.9 0.0765 0.0184 0.0458 0.0021 0.0252

Table 3. Comparisons of the average absolute variation of selected settings. “m” is
the number of x̄As which meet the specified condition, amongst the 25 game settings.

Method Average Average Average
Absolute Absolute Absolute
variation variation variation

av

m

av

m

av

m

when av < 0.15 when av < 0.10 when av < 0.05

Incentive Method 0.0509 0.0394 0.0166

Penalty Method 0.0519 0.0453 0.0212
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Table 4. Comparisons of the average absolute variation of selected settings. “n” is the
number of x̄As which meet the specified condition, amongst the 25 game settings.

Method Average Average Average
relative relative relative
variation variation variation

rv

n

rv

n

rv

n

when rv < 0.15 when rv < 0.10 when rv < 0.05

Incentive Method 0.0433 0.0302 0.0166

Penalty Method 0.0628 0.0426 0.0246

groups, both on absolute variation and relative variations measures, the incen-
tive method yields less variation than the penalty method does. x̄A found by the
incentive method deviates from the P.E.P less than those found by the penalty
method. Therefore, Incentive method is more effective than Penalty method in
this case study.

5.3 Imposing No Constraints

To examine the usefulness of the constraints, we further do experiments whose
fitness functions contain none of three mentioned constraints. All individuals
play the bargaining game. In this non-constrained setting, although the major-
ity of the 100 runs result with strategies that propose xA within the cake size,
i.e. satisfying the hard constraint, their value x̄As have very large variations
|x∗

A − xA|, far away from the P.E.P prediction. Besides, a few runs end up with
some xAs being exceptionally large or exceptionally small (including negative)
values, which shows that the search probably had no chance to enter the area of
(0, 1]. The average of 100 runs x̄A is then surely far from meeting the fundamen-
tal requirement xi ∈ (0, 1]. Therefore, imposing no constraints into the fitness
function is impractical in this case.

6 Concluding Summary

In this work, we have introduced Incentive Method, which is a constraint han-
dling technique, in evolutionary algorithms. It is especially suitable for problems
where solutions can be categorized into different groups by the nature of the
constraints. The main idea of Incentive Method is to define the relevance of each
type of constraint to the quality of a solution. Thus all candidate solutions can
be categorized into partially ordered sets. For example, the set of solutions vi-
olate hard constraints are definitely less favorable to the set of solutions that
violate some soft constraints, which are in turn less favorable to solutions that
violate no constraints. Note that some soft constraints may not be strictly or-
dered. The partial order of the constraints is translated into the objective fitness
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function. Thus evolution rewards favorable candidate solutions according to this
partial ordering mechanism. This helps to guide the evolutionary search to allo-
cate more effort to search areas that are more promising, without totally denying
access to other areas.

We equipped a genetic programming with Incentive Method and used it to
search strategies for the classic bargaining problem. A candidate solution is rep-
resented by tree structure. This method has successfully produced experimental
outcomes, in terms of statistics, consistent with the game theoretically perfect
equilibrium. In addition, we compared the incentive-based evolutionary algo-
rithm with a penalty method and with a non-constraint setting on how close
their solutions approximate game-theoretic perfect equilibrium partition P.E.P.
Experimental results show that Incentive Method has found more precise ap-
proximation to the game-theoretic partition. This result encourages us to apply
Incentive Method to other bargaining problems and some other optimization
problems with similar constraints features in future.

Acknowledgement

Authors would like to thank Alberto Moraglio who has given important feed-
backs on the initial submission.

References

1. Koza, J.: Genetic Programming: On the Programming of Computers by Means of
Natural Selection. The MIT Press, USA (1992)

2. Miller, J.: The Co-evolution of Automata in the Repeated Prisoner’s Dilemma.
Journal of Economic Behavior and Organization, (1996) 29(1), 87-112,

3. Jin, N. and Tsang, E. (2005) Co-evolutionary Strategies for an Alternating-Offer
Bargaining Problem, IEEE Symposium on Computational Intelligence and Games
(IEEE CIG), Colchester, UK 4-6 April 2005

4. Muthoo, A.: Bargaining Theory with Applications, Cambridge University Press
(1999)

5. Rubinstein, A.: Perfect Equilibrium in a Bargaining Model, Econometrica, (1982)
50: 97-110

6. Tsang, E., Li, J.: EDDIE for financial forecasting, in S-H. Chen (ed.), Genetic Al-
gorithms and Programming in Computational Finance, Kluwer Series in Computa-
tional Finance, 2002, Chapter 7, 161-174

7. Tsang, E.P.K., Foundations of Constraint Satisfaction, Academic Press, London and
San Diego, 1993



Iterative Filter Generation
Using Genetic Programming

Marc Segond, Denis Robilliard, and Cyril Fonlupt

Laboratoire d’Informatique du Littoral,
Maison de la Recherche Blaise Pascal,
50 rue Ferdinand Buisson - BP 719,

62228 CALAIS Cedex, France
segond@lil.univ-littoral.fr

http://lil.univ-littoral.fr/~segond/

Abstract. Oceanographers from the IFREMER institute have an hy-
pothesis that the presence of so-called “retentive” meso-scale vortices in
ocean and coastal waters could have an influence on watery fauna’s de-
mography. Up to now, identification of retentive hydro-dynamical struc-
tures on stream maps has been performed by experts using background
knowledge about the area. We tackle this task with filters induced by
Genetic Programming, a technique that has already been successfully
used in pattern matching problems. To overcome specific difficulties as-
sociated with this problem, we introduce a refined scheme that iterates
the filters classification phase while giving them access to a memory of
their previous decisions. These iterative filters achieve superior results
and are compared to a set of other methods.

1 Introduction

Watery fauna concentration in coastal waters seems to be correlated with the
presence of physical structures that may retain eggs and larvae in favorable
environmental conditions. In the case of the anchovy in the Gulf of Biscay,
biologists from the IFREMER institute are studying the correlation between
retentive meso scale vortices, whose size ranges from 10km to 200 km, and the
demography of these fishes. The detection of these structures is made by experts
on stream vector maps using background expertise about plausible structures.

Maps are actually generated by hydro-dynamical simulations such as the
Mars3D or the Mercator models1. A typical stream map is a 3 dimensional
matrix containing the x and y components of the stream vector at 10 meters
depth on a discrete grid with 10km by 10km cells, collected at regular time steps,
usually every 24 hours. The maps are stored in the NetCDF2 format.

To verify the hypothesis at hand, the frequency and location of interesting
vortices has to be recorded and summed up over many years, yielding a very large
1 http://www.mercator-ocean.fr
2 http://my.unidata.ucar.edu/content/software/netcdf/index.html
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amount of maps to be processed. Thus an automatic and efficient detection tool
is needed to conduct the study.

When the specialist highlights retentive structures by hand on the stream
maps, he uses expertise based on his knowledge of the area, of the character-
istics of the simulation model and his understanding of the phenomenon he
studies. During this process some structures that could be retained by a naive
observer are rejected, e.g. because the stream aspect is chaotic in the neighbor-
hood, suggesting these are only transient patterns or artifacts due to the model
digitization. Thus the physics-based vortices detection problem is topped by a
hidden criteria learning task. An efficient detection scheme for this problem must
therefore build over these two aspects: using hydrodynamics and being able to
learn part of the expert’s knowledge.

An ant algorithm was proposed in [1] to solve this problem. In this scheme,
ants used physical information from the stream vector field and a further pa-
rameter tuning phase brought the algorithm closer towards matching the hid-
den criteria. This approach was satisfactory and superseded standard vorticity
threshold methods (see [3, 4] for a presentation of such techniques).

Nonetheless the question was still open whether a supervised machine learning
scheme could achieve superior results. In this paper we introduce genetic pro-
gramming filters that are able to take into account the physical characteristics
of the problem and to learn from example maps.

2 Genetic Programming Filters

The basic scheme is inspired by the work of Daida [2] on detecting pressure ridges
in the arctic ice cover. We evolve filters (i.e. classifier programs) in a supervised
learning framework. These are selected on their ability to correctly classify cells
of a stream map whether they belong or not to a structure of interest. Each filter
classify one map cell at a time, and it is successively applied to every cell of the
map. Evaluation is done on a set of reference maps tagged by the expert (see
Figure 1).

Filters are implemented with the ECJ3 Java evolutionary library, using the
standard Lisp-like tree representation. Inputs available to a filter are floating
point physical data such as stream strength and vorticity. We keep the closure
property and use only GP nodes that return a floating point value.

The conversion between this floating point matrix and the boolean values
expected for classification is done with a threshold value. Continuously increasing
the threshold from 0 to 1, we obtain a monotonous increase of the true positive
and false positive rates, from 0% to 100%: we can draw a Reicever Operating
Characteristics (ROC) curve. This is a standard technique (see e.g. [6]) that
will be used later when evaluating and comparing heuristics. The end-user will
have the choice of the threshold level that corresponds to his preferred trade-off
between sensibility and specificity.

3 http://cs.gmu.edu/eclab/projects/ecj/
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Fig. 1. An example of detection performed by an expert: interesting vortices are circled
in black

2.1 Basic GP Filters Presentation

The set of function and terminal nodes is shown in table 1, and it has been
chosen to allow computations on the physical characteristics of the stream.

For example, it seems relevant to use information from the 8 neighbors of the
cell we are working on: the “strength3x3” terminal returns the mean value of the
stream strength in the neighboring cells, and the “angle3x3” terminal gives the
mean value of the angle of the vector stream in those same cells. The “min” and
“max” function nodes have been introduced to allow comparisons. The “curl”
and “divergence” are standard operators used in vortices detection. Notice that

Table 1. Summary of non-terminal and terminal nodes used in the basic GP filters

Name Meaning Input Output
add addition 2 reals 1 real
sub subtraction 2 reals 1 real
mul multiplication 2 reals 1 real
div protected division 2 reals 1 real
min minimum of 2 arguments 2 reals 1 real
max maximum of 2 arguments 2 reals 1 real
cos cosine 1 real 1 real
sin sine 1 real 1 real

strength stream strength null 1 real ∈ [0, 1]
strength3x3 stream strength averaged over a 3x3 cells matrix null 1 real ∈ [0, 1]
angles3x3 stream vector angle averaged over a 3x3 cells matrix null 1 real

curl cell vorticity null 1 real
divergence cell divergence null 1 real

erc ephemeral random constant null 1 real
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Table 2. General parameters used in the GP algorithm

Name Value
Number of generations 80
Size of the population 600
Max depth for a tree 15

Mutation rate 5%
Crossover rate 85%

Reproduction rate (with elitism) 5%

in order to speed up the evaluation phase, most terminal nodes (curl, divergence,
strength, strength3x3, angle3x3) are pre-computed for the maps in the learning
set. The evolution parameters are shown in table 2, and are quite standard.

2.2 Fitness Function Choice

One of the difficulty in Genetic Programming is to find the adequate fitness func-
tion to optimize. Basically, the fitness of individuals is evaluated by measuring
their performance on a learning set of 10 maps tagged by an expert. However
the actual performance of a filter depends on the choice of the threshold level. A
possible choice is maximizing the area under the ROC curve, denoted as AUC
— Area Under Curve — (see Sebag et al. [5] for a discussion about efficient
computation of this area). Optimizing the AUC delivers pretty good results, but
the ant algorithm still dominate when the threshold trade-off is aimed at very
low false positive rates.

We therefore propose to focus on having a steeper slope in the left part of the
ROC curve (low false positive rates). This is achieved by choosing a set of 10
values on the ROC x-axis, 5 in the range [0.25, 0.35], the others equally spaced
on the range [0, 1] \ [0.25, 0.35], and minimizing the following fitness function:

f =

∑n
i=1

yi

xi

n

were xi is a value chosen on the x-axis and yi the corresponding value on the
y-axis according to the ROC curve.

2.3 First Results and Discussion

Unfortunately the GP approach we just described fails to give conclusive results,
although it relies on state-of-the-art evolutionary techniques previously success-
ful on classification and pattern detection cases. On our problem, the filters
ROC curves are dominated by the results obtained from the ant algorithm. GP
produces rough and noisy classification specially near the coast, that reminds of
results obtained by vorticity analysis.

We conjecture that these filters have a too reduced “sight range” to recognize
global vortices shapes that can be spread over 20 grid cells or more. We saw in
the introduction that whether or not a structure is considered retentive certainly
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depends on each cell of that structure, but also on distant surrounding cells that
are not member of the vortices. In this regard, the “strength3x3” and “angle3x3”
nodes probably give a too local information, and we need to add more problem
specific knowledge to allow GP to cross the gap.

Experiments have been conducted to let the evolution process determine the
size of these matrix-shaped terminals, but these were not successful, leading us
to propose a solution based on the propagation of classification results across
the grid, as explained in the next section.

3 Iterative Genetic Programming Filters

To remedy the failure of the previous scheme, we need to provide some means
of communicating information over the grid, while keeping a manageable search
space: a large increase in the number of terminals to access a variety of distant
cells would prevent successful learning by GP.

Our proposition is iterative filters, i.e. filters that are applied in several suc-
cessive classifications steps on a map, retaining the final last decision, and
that have a memory of their previous decisions at each classification step (see
Figure 2). If the filter operating at a given cell accesses such memory from neigh-
bors, information will slowly spread along the grid at every iteration.

3.1 Iterative GP Filters Presentation

From a technical point of view, two nodes are added to the terminal set:
lastValue and meanLastValue.

Fig. 2. Description of the way an iterative filter works
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– lastValue: returns a value that aggregates the filter results at previous
iterations. This value is 0.5 during the first classification step (no previous
result), and it is updated using the following equation:

lastValuei+1 =
2 ∗ lastValuei + F

3

Fig. 3. Evolution of the classification after 1, 15 and 30 iterations, without distCoast
terminal

Fig. 4. Comparison of fitness evolution for different iteration parameters
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were lastValuei is the value returned by this terminal at iteration i, and F
is the classification value computed by the filter.

– meanLastValue: returns the mean of lastValue for the 8 neighboring cells.

Thanks to meanLastValue, a filter is now able to take into account classifi-
cation results from its immediate neighbors, and, within successive iterations, it
can grasp classification information about cells distant from two, three or more
grid cells, depending on how many iterations we allow. The F value produced
by the individual during the last iteration will be the its final classification and
will serve to compute its fitness.

Experiments also show that it is very difficult for a filter to avoid false positives
near the coast line, almost setting a higher bound to performances. To tackle
this problem, a distCoast node is introduced that returns 1 if the cell is farther
than 2 grid steps from the coast, else 0.

3.2 Iterative Filters Results

On Figure 3 we plot the evolution of the classification result for three iteration
limits. We observe that the classification is refined in the first iterations before
becoming stable.

Figure 4 is a standard fitness versus generations plot. We can see that iter-
ative filters have an increased efficiency, with a maximum at 6 iterations. The
distCoast node also boosts the performance.

Fig. 5. ROC curve based comparison between GP filters and other methods
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Fig. 6. A map filtered using the “distCoast” node

A comparison with the ant algorithm and streamlines schemes introduced
in [1] is given in Figure 5 using ROC curves. Depending on the trade-off desired,
either the “steeper slope” fitness function or the AUC maximization may be
preferred. This plot also shows the benefits of adding the distCoast terminal.
The number of false positive is reduced within the neighborhood of the coast
line, as is illustrated on Figure 6 to be compared with Figure 3 for this matter.

Maximizing the ROC AUC within a 5-fold cross validation experiment (1600
training cells, 7200 test cells), we obtained a mean AUC value of 0.8955 (nor-
malized, maximum is 1) with a standard deviation of 0.0093. We performed a
similar experiment with a non-recurrent back-propagation artificial neural net-
work (see e.g. [7]), taking 54 inputs i.e. the same 6 terminal inputs as GP for
9 cells evenly spaced in a 70km x 70km area around the classification focus.
Limiting the learning time to 15 min as for GP, we obtained a mean AUC value
of 0.7515 with a standard deviation of 0.0178. We cannot claim to have spent as
much time in tuning the artificial neural network (ANN) as we have spent for
the GP algorithm, nonetheless it gives some hints about GP being competitive
with ANN for this problem.

4 Conclusion

We presented iterative GP filters for detection of retentive meso-scale vortices on
simulated stream vector fields. This scheme has needed considerable insights into
the problem in order to develop not only suitable GP functions and terminals,
but also an original iterated scheme for GP classification and an alternative to
the AUC maximization fitness function.
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With our GP based filtering method, we are able to learn some part of the
expert knowledge, while also performing meaningful computations in term of
vector field analysis, as can be judged by the results. We think that this iterating
scheme for GP classification may well be of interest in the image analysis domain
and possibly for general classification tasks.

Although preliminary work with ADFs have shown no increase in perfor-
mances, we also plan to investigate further this way.
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Abstract. Evolutionary algorithms have already been more or less suc-
cessfully applied to a wide range of optimisation problems. Typically,
they are used to evolve a population of complete candidate solutions to
a given problem, which can be further refined by some problem-specific
heuristic algorithm. In this paper, we introduce a new framework called
Iterative Prototype Optimisation with Evolved Improvement Steps. This
is a general optimisation framework, where an initial prototype solution
is being improved iteration by iteration. In each iteration, a sequence of
actions/operations, which improves the current prototype the most, is
found by an evolutionary algorithm. The proposed algorithm has been
tested on problems from two different optimisation problem domains -
binary string optimisation and the traveling salesman problem. Results
show that the concept can be used to solve hard problems of big size
reliably achieving comparably good or better results than classical evo-
lutionary algorithms and other selected methods.

1 Introduction

In the evolutionary optimisation framework, the evolutionary algorithms (EAs)
are typically used to evolve a population of candidate solutions to a given prob-
lem. Each of the candidate solutions encodes a complete solution - a complete
set of problem control parameters, a complete schedule in the case of scheduling
problems, a complete tour for the traveling salesman problem, etc. This implies,
that especially for large instances of the solved problem the EA searches enor-
mous space of potential solutions. In this paper, a new approach is presented,
where the EA does not handle the solved problem as a whole. Instead, the EA
is employed within the iterative optimisation framework to evolve the best mod-
ification of the current solution prototype in each iteration. Thus, the load of
searching for the best complete solution at once is cut into pieces, each of them
representing a process of seeking the best transformation of the current solution
prototype to the new possibly better one.

The structure of the paper is as follows. In section 2, the general outline of
the algorithm of Iterative Prototype Optimisation with Evolved IMprovement
Steps (POEMS) is described. Section 3 describes the problems and the experi-
mental set-up used for the proof-of-concept validation of POEMS. In section 4,
POEMS is compared with other evolutionary approaches and other selected

P. Collet et al. (Eds.): EuroGP 2006, LNCS 3905, pp. 154–165, 2006.
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methods. The paper ends with conclusions on effectiveness of POEMS, its ad-
vantages and disadvantages, and its further extensions.

2 POEMS

The main idea behind POEMS (Figure 1) is that some initial prototype solution
is further improved in an iterative process, where the most suitable modification
of the current prototype is sought for using an evolutionary algorithm (EA) in
each iteration. The modifications are represented as a sequence of primitive ac-
tions/operations, defined specifically for the solved problem. Such a sequence can
be considered a program and the employed EA a special case of a linear genetic
programming. The evaluation of action sequences is based on how good/bad
they modify the current prototype, which is an input parameter of EA. Se-
quences that do not change the prototype at all are penalized in order to avoid
generating trivial solutions. After the EA finishes, it is checked whether the best
evolved sequence improves the current prototype or not. If an improvement is
found, then the sequence is applied to current prototype and the result becomes
a new prototype. Otherwise the current prototype remains unchanged for the
next iteration.

Representation. The EA evolves linear chromosomes of length MaxGenes,
where each gene represents an instance of certain action chosen from a set of
elementary actions defined for given problem. Each action is represented by a
record, with an attribute action type followed by parameters of the action. Be-
sides actions that truly modify the prototype there is also a special type of action
called nop (no operation). Any action with action type = nop is interpreted as a
void action with no effect on the prototype, regardless of the values of its param-
eters. A chromosome can contain one or more instances of the nop operation.
This way a variable effective length of chromosomes is implemented.

Operators. The crossover operator generates a child chromosome so that each
gene of the new chromosome is a copy of randomly chosen gene either from the
first or the second parent. Both parents have the same probability of contribut-
ing its genes to the generated child, and each gene can be used only once. This
can be considered a generalized uniform crossover, where any combination of
parental genes can form a valid offspring. After the new chromosome has been

1 generate(Prototype)
2 repeat

3 BestSequence ← run EA(Prototype)
4 if(apply to(BestSequence, Prototype) is better than Prototype)
5 then Prototype ← apply to(BestSequence, Prototype)
6 until(POEMS termination condition)

7 return Prototype

Fig. 1. An outline of POEMS algorithm
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1 initialize(OldPop)
2 BestSequence ← best of(OldPop)
3 repeat

4 NewPop ← BestSequence
5 repeat

6 Parents ← select(OldPop)
7 Children ← cross over(Parents)
8 mutate(Children)
9 evaluate(Children)
10 NewPop ← Children
11 until(NewPop is completed)

12 BestSequence = best of(NewPop)
13 switch(OldPop, NewPop)
14 until(EA termination condition)

15 return BestSequence

Fig. 2. An outline of a simple generational evolutionary algorithm

finished, it is checked for gene duplicates and left with just one copy of each non
nop action. Each duplicate of some non nop action is converted into nop action,
simply by setting action type = nop. This means that the population genotype
can contain many ”inactive” action specifications. These can be activated again
by changing their action type from nop to some effective action. Action can be
activated/inactivated by mutation operator, which can also change the param-
eters of the action.

Evolutionary model. The design and configuration of the EA can differ for
each particular optimisation problem. Figure 2 shows a simple generational evo-
lutionary algorithm (gEA) with tournament selection, and elitism preserving the
best individual in the population. Figure 3 shows a mutation-based iterational
EA (iEA) that iteratively modifies a population of individuals. In each itera-
tion a chromosome is selected by tournament selection. Then the chromosome is
mutated so that one action out of its active actions (i.e. genes with action type
other than nop) is selected and inactivated (action type set to nop). If the fitness
of the chromosome did not worsen after this change the modified chromosome
is accepted and replaces other bad performing chromosome in the population.

In general, the EA is expected to be executed many times during the whole
run of the POEMS. Thus, it must be configured to converge fast in order to
get the output in short time. As the EA is evolving sequences of actions to
improve the solution prototype, not the complete solution, the maximal length
of chromosomes MaxGenes can be short compared with the size of the problem.
For example MaxGenes would be much smaller than the size of the chromosome
in case of binary string optimisation or much smaller than the number of cities in
case of the TSP problem. The relaxed requirement on the expected EA output
and the small size of evolved chromosomes enables to setup the EA so that
it converges within a few generations. It is important to note, that POEMS
does not perform prototype optimisation via improvement steps that are purely
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1 initialize(Population)
2 repeat

3 Parents ← select(Population)
4 Children ← cross over(Parents)
5 mutate(Children)
6 evaluate(Children)
7 Replacement = find replacement(Population)

8 Population[Replacement] ← Child1
9 Replacement = find replacement(Population)

10 Population[Replacement] ← Child2
11 until(EA termination condition)

12 BestSequence ← best of(Population)
13 return BestSequence

Fig. 3. An outline of a mutation-based iterational evolutionary algorithm

local with respect to the current prototype. In fact, long phenotypical as well as
genotypical distances between the prototype and its modification can be observed
if the system possesses a sufficient explorative ability. The space of possible
modifications of the current prototype is determined by the set of elementary
actions and the maximum allowed length of evolved action sequences MaxGenes
(as demonstrated in section 6). The less explorative actions are and the shorter
sequences are allowed the more the system searches in a prototype neighborhood
only and the more it is prone to get stuck in a local optimum, and vice versa.

3 Test Problems

The first set of test problems belongs to a binary string optimisation problem do-
main. It includes simple onemax, royal road, deceptive, hierarchical, multimodal
and non-linear function optimisation problems.

OneMax. This is a simple problem, where the chromosome is assigned a value
equal to the number of ones it contains. Thus the optimal sought string is of
fitness equal to the size of the chromosome (that is 100, here). Note that this
function is considered to be easy for GAs.

DF3. This is a representative of deceptive problems, i.e. problems that are in-
tentionally designed to make a GA converge towards local deceptive optimum.
The problem is composed of 25 copies of a 4-bit fully deceptive function DF3
taken from [8]. DF3 has a global optimum in the string 1111 with fitness 30 and
a deceptive attractor 0000 with low fitness 10, which is surrounded, in the search
space, by four strings of just one 1 with fitness values 28, 27, 26, and 25. The
whole 100-bit long chromosome has the global optimum of value 750.

Rosenbrock. This problem uses as the basic building block the well-known Rosen-
brock function of two parameters x and y, each of them coded on 12 bits. The
function has high degree of dependency between variables, which makes it hard
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to optimize using standard genetic algorithms. The sought minimum value of
the function is 0.0 at the point [1.0, 1.0]. The problem consists of 4 copies of
the function whose contributions are summed up in the final fitness value. Any
solution of fitness less than or equal to 0.001 is considered to be an optimum.

F103. This test problem is based on function F103(x, y) taken from [9]. It is a
non-linear non-separable and highly multimodal function of two variables, where
the parameters x and y are each coded on 10 bits. The global minimum is of value
0.0. Our problem consists of 5 copies of the function, where the fitness of the
whole chromosome is given as the sum of the five function contributions. Again,
any solution of fitness less than or equal to 0.001 is considered an optimum.

RR. This is a 16-bit version of the RR1 single-level royal road problem described
in [2]. The problem is defined by enumerating the schemata, where each schema
si has assigned its contribution coefficient ci. The evaluation of an arbitrary chro-
mosome is given as a sum of all contributions of those schemata that are covered
by the chromosome. Only the combination of all ones on the bits pertinent to a
given schema contributes to the fitness with the nonzero value, any other combi-
nation has value 0. Here, the problem is defined as a concatenation of six 16-bit
long schemata, so the optimum solution is the string of all ones of the fitness 96.

H-IFF. A hierarchical-if-and-only-if function proposed in [6] is the representative
of hierarchically decomposable problems. The hierarchical block structure of the
function is a balanced binary tree. Leaf nodes, corresponding to single genes,
contribute to the fitness by 1. Each inner node is interpreted as 1 if and only if
its children are both 1’s, and as 0 iff they are both 0’s - in such cases the inner
node contributes to the fitness by a positive value 2height(x), where height(x)
is the distance from the node x to its antecedent leaves. Otherwise the node is
interpreted as null and its contribution is 0. The function has two global optima
- one consists of all 1’s and the other one has all 0’s. We have used the 128-bit
version with global optima of value 1024.

TSP. The second set of test problems are instances of the well-known Traveling
Salesman Problem. We have used datasets for 100, 200, 500, 1000, and 2000
cities, where the cities were generated randomly in the area of size 100 by 100.

4 Optimisation Techniques Used for Comparisons

On the binary string optimisation problems, we have compared the proposed
POEMS algorithm with the following approaches :

– Simple Genetic Algorithm (SGA). This is a generational genetic algorithm,
with tournament selection, 2-point crossover, a simple bit-swapping mutation
operator, and an elitism, which preserves the best individual in the popu-
lation. Population size 500 was used. The probability of crossover was 0.9.
The mutation rate was set so that one bit of each chromosome is inverted.

– Genetic Algorithm with Gene Based Adaptive Mutation Strategy (GBAM).
Uyar et al. [5] proposed this adaptive approach for adjusting mutation rates
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for the gene locations based on the feedback obtained by observing the rel-
ative success or failure of the individuals in the population. There are two
mutation rates for each locus - one for allele 1 and the other for allele 0. For
each generation the mutation rates are updated for each locus so that the
mutation rate for the better-performing allele decreases, and vice versa. This
certainly speeds up the convergence so the strategy is implemented with a
convergence control mechanism for escaping local optima.

– A Genetic Algorithm with Limited Convergence (GALCO). Kubalik et al. [4]
proposed this approach for preserving population diversity. It is based on an
idea that the population is explicitly prevented from becoming homogenous
by simply imposing limits on its convergence. This is done by specifying the
maximum difference between frequency of ones and zeros at any position
of the chromosome calculated over the whole population. A steady-state
evolutionary model and a special replacement operator are used to keep the
desired distribution of ones and zeros during the whole run.

Note that all of these techniques are more or less modifications of the stan-
dard genetic algorithm. As such they rely on the proper spacial structure of the
chromosome. In other words, they work well if the groups of dependent genes
are spatially clustered within the chromosome. This is called a tight linkage. In
the opposite case, when the linkage is loose (i.e. the dependent genes are far
from each other), the genetic algorithm can not combine building blocks of two
parental chromosomes properly, see [3]. In order to show the effect of the linkage
on the performance of the algorithms, two series of experiments were carried
out - one for the tight linkage, and the other for the loose linkage (this was
implemented so that the sequence of genes within the chromosome was chosen
by random for each experiment). Obviously, the evolutionary algorithm used in
POEMS is linkage independent, so it was tested on the loose linkage only.

The following approaches have been compared with POEMS on the TSP:

– Genetic Algorithm with E-R crossover (ER). This is a steady-state genetic
algorithm, with the edge-recombination crossover proposed by Whitley et al.
[7]. Mutation operator exchanges positions of two randomly selected cities
within a given path. First, two parental chromosomes are selected by tourna-
ment selection, and crossed over to generate its offspring. The new chromo-
some undergoes the mutation and is evaluated. Finally, the newly generated
chromosome replaces a chosen poorly performing chromosome in the popu-
lation if the new chromosome outperforms the replacement one.

– Self Organising Maps (SOM). The salesman’s city tour is represented by a
ring of neurons, where the neighboring neurons are connected. The general
schema of SOM algorithm consists of two procedures: (1) a selection of win-
ner neuron, where the closest neuron for each city is selected and (2) an
adaptation of the winner neuron, where the neuron along with its several
neighbors are moved towards the closest city. These two procedures are re-
peated until a stopping condition is satisfied. The algorithm implemented in
this work is based on [1].
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– 2-opt heuristic (2-opt). This algorithm is based on simple local search heuris-
tic called 2-opt, that was proposed by Flood and Croes in fifties. The algo-
rithm starts with some feasible (random) solution. Than it searches for two
edges e1 = (v1, v3), e2 = (v2, v4) such that a recombination of the edges
to e1 = (v1, v2), e2 = (v3, v4) improves the current solution. The algorithm
stops if no two edges for improvement recombination are found.

5 Experimental Setup

For the binary string optimisation problems the action sequences evolved in
POEMS were composed of just one type of action called invert(gene). The
action simply inverts specified gene within the prototype.

For the TSP problem a direct path representation of the tour was used. The
prototype tour in POEMS was modified by action sequences composed of actions
of the following types

– move(city1, city2) moves city1 right after city2 in the tour,
– invert(city1, city2) inverts a subtour between city1 and city2,
– swap(city1, city2) swaps city1 and city2.

Both versions, POEMS with gEA and POEMS with iEA were tested on the
binary string optimisation problems. Both of them used the same parameter
setup as follows: chromosome length 10 (the maximal number of active actions
in the action sequence, see Section 2), population size 200, number of fitness func-
tion evaluations 3000, tournament selection with N = 3, crossover and mutation
operators as described in Section 2 with Pc = 0.8 and Pm = 0.1, respectively.

The other algorithms were used with the following common setting: popula-
tion size 500, 2-point crossover with Pc = 0.8, tournament selection with N = 3.
SGA used a mutation operator with the probability Pm = 0.01, GALCO does
not use any explicit mutation operator, and GBAM was used with the mutation
rate interval (0.0001 − 0.2), the initial mutation rate 0.025, and the mutation
adaptation step 0.001. All algorithms were running for 106 fitness evaluations.

The following configurations of POEMs and ER algorithms were used in ex-
periments on TSP problem. The population size was set to the number of cities
(Cities) and 2·Cities for POEMS and ER, respectively. EA used in POEMS (line
3 in Figure 1) worked with chromosomes of length 10 and lasted for 1000·PopSize
fitness evaluations.

Two strategies for generating of the starting prototype were used - the ran-
dom initialisation and the heuristic one. When generating a tour, a decision of
what city should be visited from the current city is made by random in the
random strategy whilst the heuristic strategy prefers the next city to be from
the neighborhood of the current city. Similarly, the concept of the neighborhood
was used with the ER crossover so that the operator prefers links to cities from
the current city’s neighborhood.

Both POEMs and ER were running for Cities · 1000 fitness function evalua-
tions. The tournament selection parameter and the neighborhood size were set
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Table 1. Configurations of POEMs and ER used for TSP problem

PopSize Tournament Cities Neighborhood

100 3 100 20
200 4 200 15
500 5 500 10

1000 6 1000 7
2000 7 2000 5
4000 8

depending on the population size and the number of cities as shown in Table 1.
The crossover operator was applied on the parents with the probability 0.9. If
the parents did not undergo crossover they were mutated so that positions of two
randomly chosen cities were swapped. The following statistics were calculated
based on 50 runs of each experiment

– Mean. Mean best-of-run value calculated over the 50 independent runs.
– StDev. Standard deviation of the best-of-run values.
– #Succ. A number of runs, in which the optimum solution was found.
– When. The average number of fitness evaluations needed to get the optimum.
– BestPath. The shortest path out of 50 runs for each TSP experiment.

6 Results

Table 2 shows results obtained with POEMS-gEA and POEMS-iEA on binary
string optimisation problems. It shows that POEMS-iEA is better than POEMS-
gEA on OneMax, DF3, Rosenbrock, and F103 problem. POEMS-iEA achieves
either better mean quality of the best-of-run solutions or finds the optimal so-
lutions more often or is faster in converging to the optimal solution on those
problems. This may be attributed to the fact that the iEA is designed to con-
verge very fast so it might be able to come up with better action sequence than
gEA in each iteration. On the other hand, the performance of both variants of
POEMS is very poor for the RR and H-IFF problems. For the royal road prob-
lem this might be surprising as those problems are considered easy for genetic
algorithms. The explanation of why POEMS does not work for these problems

Table 2. Performance of POEMS on binary string optimisation problems

POEMS-gEA POEMS-iEA
problem Mean StDev #Succ When Mean StDev #Succ When

OneMax 100.0 0.0 50 20732 100.0 0.0 50 12168
DF3 749.1 3.7 47 617034 750 0.0 50 307820
Rosenbrock 0.36 0.52 7 656342 0.029 0.14 17 516988
F103 0.0127 0.0093 0 - 0.0063 0.0061 1 769400
RR 5.1 7.5 0 - 6.7 9.7 0 -
H-IFF 568.8 58.8 0 - 580.8 15.2 0 -
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is that it lacks the ability to combine several solution into a new one as the stan-
dard genetic algorithms do. POEMS seeks the optimal solution via a process of
iteratively modifying (mutating) the prototype solution. Thus, the algorithm can
get stuck with such a prototype, for which it is very hard (or even impossible)
to evolve any improving action sequence. In case of RR problem, for POEMS is
very hard to find a sequence of single bit inversions such that it would discover
a new 16-bit long building block of all ones without simultaneously damaging
any of already existing blocks in the prototype. Similarly this applies for H-IFF
problem, where POEMS optimizes the prototype up to some level, where any
further improvement would require to invert a large block of genes.

When comparing POEMS with the other algorithms (see Table 3) on the
binary string optimisation problems we can observe that if the chromosome

Table 3. Performance of SGA, GBAM and GALCO on binary string optimisation
problems

tight linkage loose linkage
problem Mean StDev #Succ When Mean StDev #Succ When

SG
A

OneMax 100.0 0.0 50 13448 100.0 0.0 50 13564
DF3 750 0.0 50 595359 707.1 6.8 0 -
Rosenbrock 0.063 0.084 4 724888 0.502 0.591 0 -
F103 0.005 0.0035 2 680329 0.0197 0.0156 0 -
RR 91.5 7.3 36 654756 88.8 9.7 35 706064
H-IFF 710.4 87.8 1 295261 617.6 34.7 0 -

G
B

A
M

OneMax 100.0 0.0 50 10935 100.0 0.0 50 10847
DF3 750.0 0.0 50 558097 728.3 6.9 0 -
Rosenbrock 1.22 0.46 0 - 2.11 0.8 0 -
F103 0.32 0.11 0 - 0.47 0.17 0 -
RR 96.0 0.0 50 43984 96.0 0.0 50 68378
H-IFF 790.8 57.4 0 - 625.6 38.1 0 -

G
A

L
C

O

OneMax 100.0 0.0 50 141190 100.0 0.0 50 142170
DF3 750.0 0.0 50 108685 714.6 5.2 0 -
Rosenbrock 0.0103 0.0137 1 936201 0.36 0.26 0 -
F103 0.0008 0.0004 38 642325 0.025 0.013 0 -
RR 94.7 4.4 23 453373 43.5 8.6 0 -
H-IFF 1024.0 0.0 50 22620 574.4 46.9 0 -

Table 4. Performance of POEMS-gEA on TSP problem

random heuristic
cities Mean StDev BestPath Mean StDev BestPath

100 831.9 15.7 803.8 818.6 14.5 786.1
200 1190.1 25.6 1156.3 1132.9 16.2 1098.1
500 2025.9 40.3 1975.6 1746.3 13.5 1718.0

1000 9970.0 290.0 9475.9 2523.0 15.0 2491.6
2000 34829.0 503.9 34281.5 3692.2 20.4 3655.1
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representation with tight linkage is used the GALCO algorithm slightly out-
performs POEMS on DF3 and F103 problems. However, the situation changes
when solving problems with loose linkage. Then the POEMS performs con-
siderably better than the other algorithms on DF3, Rosenbrock and F103
problems.

Tables 4 and 5 provide a comparison of the POEMS with ER, ER-heuristic,
SOM, and 2-opt. We can observe that POEMS with random initialisation of the
prototype works poorly on large TSP datasets. This is because starting from a
very bad tour it would require many more iterations to find a good solution than
allowed here. On the other hand, when the heuristic is used for generation of the
initial prototype the POEMS outperform all the other approaches even on the
large datasets of 2000 cities.

Table 5. Performance of ER, ER-heuristic, SOM, and 2-opt on TSP problem

ER ER-heuristic
cities Mean StDev BestPath Mean StDev BestPath

100 1192.9 54.7 1115.6 935.1 27.1 884.1
200 2096.3 74.6 1973.6 1406.1 54.6 1289.1
500 4562.4 155.5 4424.0 2753.3 66.4 2666.6

1000 8256.5 223.9 7964.1 3799.6 91.4 3678.8
2000 16956.1 480.7 16402.4 5983.5 95.1 5875.8

SOM 2-opt
cities Mean StDev BestPath Mean StDev BestPath

100 830.4 13.0 811.7 853.5 18.2 797.3
200 1155.4 12.4 1124.7 1196.1 24.1 1149.2
500 1776.0 14.0 1751.2 1866.8 123.1 1772.9

1000 2533.0 12.0 2508.4 2650.1 160.0 2572.1
2000 3725.3 14.9 3695.6 3908.1 122.8 3789.2

Table 6. Performance of POEMS-gEA using just one type of the elementary function

action type Mean StDev BestPath

invert 2554.7 13.3 2526.2
move 2689.1 20.1 2653.6
swap 2824.8 31.5 2775.1

Results in Table 6 demonstrate how the selection of elementary functions af-
fects the performance of the POEMS approach. The results were obtained for
TSP problem with 1000 cities. It shows that if just one function out of the
three functions invert, move, and swap is enabled the POEMS performs worse
than if all the functions are allowed to be combined in the action sequences.
A fragment of an execution of POEMS on TSP with 100 cities is shown in
Figure 4.
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iteration prototype fitness evolved action sequence final fitness
1 965.134 (move 58 64), (invert 24 40) 952.550
2 952.550 (move 79 73), (invert 24 18),

(invert 24 35), (move 79 80),
(invert 24 40) 927.025

3 927.025 (invert 97 82), (invert 83 82),
(move 58 64) 919.573

4 919.573 (invert 48 47), (invert 69 72),
(invert 35 47), (swap 7 3) 904.033

Fig. 4. A fragment of an execution of POEMS on TSP with 100 cities. a) an initial tour
prototype of length 965.134. b) the tour obtained after applying the action sequence
evolved in iteration 1 on the current prototype. c) the tour obtained after iteration 2.
d) the tour obtained after iteration 3. e) the tour obtained after iteration 4. f) the final
tour of length 824.874.

7 Conclusions

In this paper, an algorithm called Iterative Prototype Optimisation with Evolved
Improvement Steps (POEMS) is proposed. POEMS iteratively improves the pro-
totype solution via evolving the best sequence of actions to be applied to the
current prototype in each iteration.

The POEMS concept has been tested on the binary string optimisation prob-
lems and the traveling salesman problem and compared with other optimisa-
tion algorithms. The presented experiments show that the proposed approach
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achieves competitive or better results than the compared algorithms. However, as
a mutation-based optimisation approach it possesses a limited ability to identify
and process building blocks of higher order.

On the other hand, this approach might be well suited for solving problems
where the representation does not allow to design crossover operators that would
effectively mix important building blocks of the parental solutions. In other
words, these are the problems where the crossover performs just as a hyper-
mutation.

Future research will focus on the analysis of the proposed algorithm behavior
as well as on the identification of problems the algorithm is well suited for.
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Abstract. This paper describes the evolution of recursive functions
within an Object-Oriented Genetic Programming (OOGP) system. We
evolved general solutions to factorial, Fibonacci, exponentiation, even-n-
Parity, and nth-3. We report the computational effort required to evolve
these methods and provide a comparison between crossover and mutation
variation operators, and also undirected random search. We found that the
evolutionary algorithms performed much better than undirected random
search, and thats mutation outperformed crossover on most problems.

1 Introduction

One of the most challenging areas of research in GP is to investigate ways of
scaling its ability to evolve computer programs to larger and more complex prob-
lem domains. Modularity is arguably the main mechanism that conventional
programming uses to address complex problems, and enables solutions to such
problems to be specified as relatively simple compositions of sub-components.
Past research has attempted to integrate modularity into the GP paradigm. Sev-
eral approaches have been followed, including, Automatically Defined Functions
(ADFs) [1], Module Acquisition [2], Adaptive Representation through Learning
[3] and Automatically Defined Macros [4]. Much of modern software develop-
ment, however, is based on object-oriented (OO) programming. Object-oriented
software design couples the design of data structures [5] (Object classes or types)
with methods that operate on those structures, thereby providing better modu-
larity and reuse than non-OO techniques. We believe that object-oriented pro-
grams should also be amenable to evolutionary search, and may enable GP to
scale up to tackle complex problems that would otherwise be infeasible. This is a
very significant challenge, however, and in this paper we focus our attention on
the evolution of simple recursive methods within OOGP. The reason for doing
this is to demonstrate that OOGP is able to provide competitive performance
on this class of problem.

Recursion is a powerful concept, and when appropriate can be used to specify
very elegant programs. Where applicable, recursive programs tend to be more
compact than non-recursive (or non-iterative) expression trees. From a machine
learning perspective, one of the main goals of GP is to create a program given a
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set of training data such that the program will have a low error rate on unseen
test data. Previous research [6] has shown that more parsimonious evolved solu-
tions are less prone to over-fitting. Finally, it has been argued [7] that programs
of shorter effective length have better chances of surviving the destructive effects
of crossover than programs with larger effective length.

The main problem GP faces when evaluating recursive programs is the han-
dling of infinite loops which result from recursive function calls that never satisfy
a termination criterion. Here we use a function call limit within our interpreter.
Programs that exceed their limit are terminated and assigned minimum fitness
(maximum error). An interesting alternative is the competing coroutines method
of Maxwell [8], where a population of programs is run concurrently, with best
fitness being assigned to the first programs to provide correct output. For now,
however, we use the function call limit, as it is more straightforward to implement
and to configure.

Previous research [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20] has addressed the
issue of evolving recursive programs, using either implicit or explicit recursion
mechanisms. It is clearly not possible in a paper of this length to review all
previous attempts on the subject and provide specific comparisons to other ap-
proaches. It is worth mentioning that past research has been devoted to evolving
recursion using tree, linear (binary machine code) and stack-based hypothesis
representations. However, to our knowledge, no solutions to factorial nor expo-
nentiation, using a tree-type representation, have been attempted at the time
of writing. Furthermore, Fibonacci sequence, with a tree-type genome, was in-
duced in [11] using Automatically Defined Recursion and Architecture Altering
Operations but the evolved program did not generalize beyond the first twelve
elements of the sequence used as fitness cases during training. Even-N-Parity
with explicit recursion and tree-type representation was studied in [14]. Their
work used trees derived from logic grammars, an approach quite different from
the one taken in this paper.

This paper focuses on evolving Object Oriented (OO) recursive programs.
Of direct relevance to this paper is the work of Bruce [21] and Langdon [5]
on evolving abstract data types. The most similar prior work on evolution of
OO methods is Abbott’s [22] and Lucas’s [23] initial explorations of reflection-
based OOGP systems as well as Suarez’s et al [24] investigation of evolving OO
agent programs. Abbott used reflection to make method invocations, and men-
tioned the ability to use existing class libraries as an advantage of the approach,
though the parity problem he used as an example did not demonstrate that, and
instead used specially defined classes and methods to help solve the problem.
Lucas investigated the use of Java Reflection to enable evolutionary algorithms
to directly exploit existing class libraries and demonstrated the feasibility of his
approach with the aid of an evolutionary art example.

The most extensive set of evolved recursive programs presented so far was
due to Spector et al [9] with their PushGP system. They evolved many in-
genious recursive solutions to a number of problems. Here, we show that we
can obtain similar results in terms of evolved functionality within our OOGP
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system, with all the potential benefits that could ensue from using an OO model,
together with the ability to use the power of the Java class libraries in to poten-
tially evolve solutions to interesting real-world problems, with very little human
input.

2 OOGP: Evolutionary Computation Research System

OOGP is a Java-based Object Oriented Genetic Programming system capable
of evolving OO method implementations that match a specified interface. This
section describes the main features of the OOGP experimentation framework.

OOGP uses a panmictic, generation-based breeding policy to evolve object-
oriented programs. For this paper, we are fixing the set of available classes,
objects, variables and method signatures, and evolving only the method im-
plementations, which are specified as program-trees. Each run begins with a
population of randomly initialized program-trees.

The generational model is combined with elitism, in that a fixed percentage
of the best individuals are preserved from generation to generation. The genetic
algorithm for OOGP is the same as that for standard GP. The system provides
implementations of three tree generation methods most widely used in literature
namely, Full, Grow, Ramped Half-and-Half [20]. We used tournament selection
and standard variation operators of crossover (XO), macro-mutation (MM —
substituting a node in the tree with an entire randomly generated subtree with
the same return type) and point-mutation1 (PM — substituting a non-terminal
node with another non-terminal node with the same return and parameter types
or substituting a terminal node with another terminal node of the same return
type). We used a standard crossover operator (not homologous).

Recursion in conventional programming can be achieved by making the name
of a procedural abstraction appear in its own body, and thus enabling it to call
itself. Similarly, recursion in GP can be most naturally expressed by assigning
a name to the evolved method and allow this name to be called from within
the evolved method’s body [12, 14, 19]. An important issue is regarding what
we consider to be a non-terminal element. Using the above approach we make
no distinction between built-in methods and the evolved method, thus making
the evolved method available to the method set serving as the alphabet for
constructing hypotheses. Importantly, this representation of recursion is generic
and in-line with conventional programming’s implementation of recursive calls. It
does not require high-level recursive operators to be supplied in the method set.
Thus, the ability to synthesize arbitrary recursive behaviour from non-recursive
primitives makes recursion an emergent property of the GP run.

Given a method signature (its return type and list of parameter types), the
system evolves the code that implements the method. We consider an evolved
method’s representation to be a tree-type structure of objects of interface type
Expr. This interface is presented in Figure 1. Note that each expression has
a set of children, and an evaluation environment. The evaluation environment
1 Analogue of bit-flip mutation in standard Genetic Algorithm.
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public interface Expr {
public Object eval(Expr[] env);
public Expr[] getChildren();
public Class getType();

}

Fig. 1. The interface for an Expr, the building block of the tree-type representation

provides bindings for any formal method parameters, and this model directly
enables recursive calls [25].

Wrapper classes have been used to define the building blocks of the tree rep-
resentation. These classes include Function2, IFThenElse, Cond3, Constant,
and Parameter4, all implementing the Expr interface in order to achieve poly-
morphism during recursive tree evaluation and tree manipulation operations.
Following the discussion above, a Function object must be able to represent
both an evolved method and a primitive non-terminal element. The solution
we preferred is to declare a Function class instance variable of interface type
Callable5 and define two classes, namely, Funcall and MethodCall implement-
ing this interface. The former holds a reference to the root node of an evolved
tree-structure and triggers its evaluation, while the latter represents a primitive
OO method invocation.

The system exploits reflection to automatically discover features about the
environment (the existing classes and objects) it is to operate on. Therefore, it
is possible to discover the set of all methods that can be called on an object
of a particular class and hence invoke these during tree interpretation. Towards
this direction, we use a set of active Class types in order to populate our prim-
itive OO non-terminal (i.e methods) set. If desirable, manual intervention is
still possible by specifying the set of existing methods to be used. The com-
plete OOGP method set is large and cannot be fully documented here, but
the set of the OO primitive methods used in the experiments is presented in
Table 1.

In addition, every evolved method should be able to use its own objects to
invoke methods on. The solution we preferred is to define an ObjectHolderwrap-
per class, which has two fields: Class objectClass, and Object objectValue.
This structure provides local fine-grain control of the object classes and values.
The ObjectManager class dynamically instantiates objects of active Class types6

and makes them available for use to an evolved method during its creation. The
interface of Figure 1 shows that each tree-node, represented as a class that im-
plements this interface, is a self-evaluated entity (i.e. eval(Expr[] env)). Our
reflection-based interpreter starts the evolved method evaluation from the root
2 To avoid confusion with existing java.lang.reflect.Method we call our tree-node,

representing an OO method, a Function.
3 Analogous to Lisp’s Cond function.
4 Constant and Parameter classes represent primitive terminal elements.
5 It’s only method is: public Object call(Object[] args).
6 Via reflection-based constructor invocation.
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Table 1. Sample OOGP method set

Description Methods Argument(s) type Return type
Arithmetic add, sub, mul, div, pow Double, Double Double

exp, log, sqrt Double Double
Boolean Logic and, or, nand, nor Boolean, Boolean Boolean
List Processing cdr List List

car List Double
isEmpty List Boolean
length List Integer

Predicate =, >, >=, <, <= Double, Double Boolean

node of its tree-type structure and recursively calls the eval method on each
node. Conditional nodes (i.e instances of IfThenElse and Cond classes) are eval-
uated using the delayed evaluation model (otherwise recursive programs would
never halt). All other nodes are strictly evaluated.

The heavy reliance on reflection does have an unfortunate performance cost,
and for real-world applications a better option might be to compile the code.
This can be done by using Java toolkits that allow run-time manipulations of
classes, or by generating Java source code and then compiling it. For the simple
problems under investigation here, however, the compilation or class construction
cost could outweigh the evaluation cost.

The tree-based structures that undergo adaptation are strongly typed. This
is similar to Montana’s Strongly Typed Genetic Programming [26] in that each
Parameter and Constant has an assigned type (i.e. an instance of Class) and
each Function has a specified type for each argument and for the value it re-
turns. To assist in enforcing type constraints, while creating and manipulating
parse-trees, we implemented a class called TypeManager. This maintains three
look-up tables called typedMethods, typedTerminals and elementPossibility, all
of type HashMap from Java’s Collection API. The purpose of typedMethods and
typedTerminals is to provide direct access to the set of non-terminal and terminal
primitive elements, of a specific type, respectively. The elementPossibility data
structure is reminiscent of Montana’s [26] “type possibilities table”. It constrains
the choice of non-terminal primitives, as tree nodes, in order to ensure that the
tree can grow to its maximum depth.

An important issue of Object Orientation is polymorphism (i.e methods can
be defined that allow parameters of type Object, the root of Java’s Object Hier-
archy). This mechanism of passing polymorphic parameters is clearly desirable
in a framework that evolves OO software. Argument objects, represented by
elements of the primitive terminal set, should be allowed many entries in the
typedTerminals map, one for each parameter type they can be passed as. Sys-
tem enhancement of this kind is currently under development.

We implemented an ExpressionSimplifier class in order to syntactically
simplify the programs evolved by OOGP. The expression simplification algorithm
used the universal domain-independent editing rule defined in [20] along with a
simple hill-climber that iteratively performs a random simplification and retains
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the simpler program only if it is equally good. Random simplifications include:
(a) the substitution of a subtree with a terminal node from a predefined terminal
set, and (b) the removal of a subtree from a bigger subtree and reconnection of
the two loose ends. This approach has been remarkably successful, reducing full-
depth trees to the simplified ones shown in Figure 2.

(If-Then-Else (Cond (If-Then-Else
(Method:gt (Method:et (Method:gt

Parameter[0] Parameter[0] Parameter[1]
Constant:0.0 Constant:0.0) Constant:0.0

) Constant:1.0 )
(Method:mul (Method:et (Method:mul

Parameter[0] Parameter[0] (Evolved_Method
(Evolved_Method Constant:1.0) Parameter[0]
(Method:sub Constant:1.0 (Method:sub

Parameter[0] (Method:add Parameter[1]
Constant:1.0 (Evolved_Method Constant:1.0

) (Method:sub )
) Parameter[0] )

) Constant:1.0)) Parameter[0]
Constant:1.0 (Evolved_Method )

) (Method:sub Constant:1.0
Parameter[0] )
Constant:2.0)))

)

(a) (b) (c)

Fig. 2. Sample simplified evolved methods for (a) Factorial; (b) Fibonacci; (c)
Exponentiation

3 Experiments

Five different problems have been tackled in order to assess the feasibility and
generality of our approach in evolving recursive methods. These include the
computations of factorial, Fibonacci sequence, exponentiation, even-n-parity and
nth-3. The experiments used a variety of control parameters. Population sizes
ranged from 7, 000 to 12, 000 individuals and the number of generations was set to
50. It seemed unnecessary to extend the number of generations as the runs tended
to stagnate after approximately 30 generations. In order to enforce diversity in
the initial random generation, ramped half-and-half was used as a tree generation
method with maximum initial depth set to 4 and maximum depth produced by
the genetic operators set to 10 or 12. Tournament selection (tournament sizes
of 7 or 10) along with elitism (1%) was used as the selection mechanism. The
distribution of selection of crossover points was set to 90% probability of selecting
interior nodes (uniformly) and 10% probability of selecting a leaf node. In order
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to avoid the problem caused by non-terminating recursive structures we limited
the recursive calls to between 20 and 288. The upper bound of 288 was chosen to
be slightly larger than the largest number of recursive calls required by our hand-
coded implementation of the most recursively expensive problem, Fibonacci. By
limiting the recursive calls in this way, we may have been providing a very weak
form of guidance to the evolutionary algorithm, but this was done simply to
place a reasonable limit on the run time. When limited in this way, each single
run of the EA still took several hours.

When a program reaches the execution limit, evaluation is abandoned and
the individual is assigned the maximum error (making it unlikely that a vio-
lating program will produce offspring, unless it participates in a tournament of
equally unfit individuals). The evolution terminated if the maximum number of
generations was reached or an individual reproduced successfully the training set
outputs. Test sets measured the ability of an evolved solution to generalize to
unseen data and recognized the success of a run. No individual that has passed
all of the training cases has ever been shown to fail on any test case subsequently
presented to it. At no stage were the test sets used during training. In each prob-
lem, unless otherwise stated, we used the normalized absolute mean error on the
training set as the fitness function. The normalization gives equal weight to the
errors resulting from each training case by placing each error within the range
of {0.0, . . . , 1.0}. Thus, it restricts big errors from dominating the mean error,
which is important for problems such as factorial. The fitness function is spec-
ified in Equation 1 (the lower the numerical value the better the individual’s
performance),

Error =

n∑
i=1

|actuali−estimatei|
|actuali|+|estimatei|

n
(1)

where actuali is the correct value for the training/test case i, estimatei is the
value returned by the evolved method for the training/test case i, and n is the
size of the training/test set.

We used three different search regimes to search the space of recursive pro-
grams. The first regime used 99% XO combined with 1% PM. The second regime
used 99% MM combined with 1% PM. Note here that the exploitative nature of
PM can be used to complement the global search power of XO and MM. However,
the small probability of its application dictates a behaviour that guards against
premature loss of primitives. The third regime used random search (RS) (i.e. no
selection pressure), but arranged in generations of purely random individuals in
order to plot the fitness on the same graphs as for the other methods.

We performed 100 independent runs on each experiment in order to get sta-
tistically meaningful results. The computational effort I(M,i,z) was computed
in the standard way, as described by Koza [20]. A summary of the computa-
tional effort, sufficient to yield a solution to the considered problems with 99%
confidence, is illustrated in Table 2. The standard error estimates derive from
treating a successful outcome as the result of flipping a biased coin, and can be
used to judge the statistical significance of the differences (there is a greater than
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Table 2. Summary of results for each method on each problem (bold face indicates
best performance on a given problem, standard errors in parentheses for prob. success)

Prob. of Success (%) Minimum I(M,i,z) Fitness Evaluations
Factorial XO 40 (4.8) 1,520,000 15,200,000

MM 74 (4.4) 600,000 6,000,000
RS 6 (2.4) 20,340,000 203,400,000

Fibonacci XO 19 (3.9) 4,557,000 45,570,000
MM 25 (4.3) 2,002,000 20,020,000
RS 0 (-) - -

Exponentiation XO 6 14,238,000 142,380,000
MM 2 (1.4) 38,304,000 383,040,000
RS 2 (1.4) 52,440,000 524,400,000

Even-N-Parity XO 69 (4.6) 600,000 7,200,000
MM 78 (4.1) 680,000 8,160,000
RS 1 (1.0) 9,180,000 110,160,000

Nth-3 XO 55 (5.0) 1,224,000 24,480,000
MM 82 (3.8) 512,000 10,240,000
RS 2 (1.4) 44,064,000 881,280,000

.

99% chance that the true probability of success lies within 3 standard errors of
the estimate). Note that when showing the sample evolved methods, we show
only the simplified versions; the evolved versions prior to simplification tend to
be bloated to maximum tree depth. This may have been avoidable had we used
some form of parsimony pressure.

Factorial: We seek to evolve a recursive implementation of the factorial func-
tion. Figure 3 shows the best-of-generation individuals of 100 independent runs
using (a) XO; (b) MM; and (c) RS. Figure 3(d) presents the cumulative probabil-
ity of success resulting from the three different search regimes. We used integers
{1, . . . , 10} as training set arguments, and {11, . . . , 30} for the test set. A sim-
plified sample evolved solution is illustrated in Figure 2(a). It was possible to
coerce the system to produce different solutions by varying the primitive non-
terminal set of a given run. We experimented with evolving a factorial sequence
approximation using the arithmetic methods presented in Table 1, but excluded
the evolved method name from the function set, hence preventing the evolution
of recursion. In this experiment we used the first 100 integers for training. The
system was able to come up with many novel solutions to the approximation
of factorial. The best evolved individual gave an error of 3, 140702 × 10−8 over
the complete training set. We plotted the evolved solution against the recursive
version and Stirling’s approximation and observed that the evolved approxima-
tion came closer to the recursive solution for the integer values in the range of
{1, . . . , 120}. We have omitted the evolved tree for space reasons.

Fibonacci sequence: We used the first 12 elements of the sequence as the
training cases. The test set was set to elements of {13, . . . , 17}. An evolved
general solution simplified to the program of Figure 2(b).
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(a) (b)

(c) (d)

Fig. 3. Evolving Factorial. (a) Best-of-generation individuals using XO; (b) Best-of-
generation individuals using MM; (c) Best-of-generation individuals using RS; (d) Com-
parison of cumulative probabilities of success between the search operators.

Exponentiation: We seek solutions to the general recursive definition of com-
puting the integer exponential ab. The training set was set to instances of 2n, n
in the range of {1, . . . , 9}. Ten unique test cases were randomly generated. Both
the base and the exponent were taken from the range of {1, . . . , 10}. Figure 2(c)
presents a general evolved solution.

Even-N-Parity: Takes a list of N boolean inputs, returning True if an even
number of inputs are True and False otherwise. Again, we seek solutions to
the general even-n-parity problem. The even-2- and even-3-parity problems were
used as the training data. These 12 cases constitute a well-defined set for learning
the recursive definition of this problem. The even-7-parity problem (128 fitness
cases) was used as the test set. The fitness function in this problem is the total
number of misclassifications on the 12 training cases.

Nth-3: This problem takes two arguments, an integer N and a list L and returns
the Nth element of L. If N < 1, it returns the first element of L. If N >
length(L), it returns the last element of L. We took training list L to be a list of
length 10 and test list L′ to be a list of length 20 with all of their entries unique.
The training set contained 20 cases of N in the range of {−4, . . . , 15}. The test
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set contained 30 cases of N in the range of {−4, . . . , 25}. The fitness function is
given in Equation 2; the lower the error the better the performance.

Error =

n∑
i=1

1 − 1
2di

n
(2)

where d is the distance between the correct position and the return value position
for the training/test case i and n is the size of the training/test set.

4 Discussion

Macro-mutation outperformed crossover on most problems. A possible reason
could be the sometimes deceptive fitness assignment inherent in fitness evalua-
tion of recursive code. Recall from Section 3 that an individual is being assigned
the maximum error in case where its evaluation reaches the execution limit. For
example, a recursive program that contains a correct transition rule but an in-
correct base case may be discarded from the population if its evaluation results
in the maximum error due to unending recursion. A program that does not halt
may still contain useful parts that need to be propagated and combined in further
generations. Programs containing erroneous recursive structures are most likely
non-terminating ones unless these recursive structures lie in tree parts not being
evaluated due to delayed evaluation. It may therefore be the case that recursive
nodes are being prematurely lost from the population and the low probabil-
ity of mutation application cannot guard against convergence to local optima.
Crossover cannot play the role of a building-block proliferation engine, and is in-
stead degenerated into a mutation operator whose randomly generated material
is restricted by population content. Run stagnation may have been avoidable
had we put more effort to optimize the algorithm’s control parameters.

Exponentiation evolution has a relatively low success rate. This is probably
due to the function having two formal parameters of the same type, thus hin-
dering the discovery of their semantic dependencies when these parameters are
used within the function body.

5 Conclusions

It is possible to routinely evolve a range of recursive functions within an object-
oriented genetic programming system. The functions can be reliably evolved
from small samples of data and generalize perfectly. Evolution significantly out-
performed random search. The recursion mechanism used is general; recursive
behaviour emerges from non-recursive primitives. The tree-type representation
produces elegant, easy-to-understand solutions, and can naturally integrate with
the Java API. This initial exploration gives impetus to concentrate on evolving
more interesting recursive algorithms, such as nlogn sorting algorithms, and to
provide a comparative assessment with other approaches. Beyond that, we be-
lieve that OOGP is an area with immense possibilities, including the evolution
of complete classes, and cooperating sets of classes.
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Abstract. Negative slope coefficient has been recently introduced and
empirically proven a suitable hardness indicator for some well known genetic
programming benchmarks, such as the even parity problem, the binomial-3 and
the artificial ant on the Santa Fe trail. Nevertheless, the original definition of this
measure contains several limitations. This paper points out some of those limita-
tions, presents a new and more relevant definition of the negative slope coefficient
and empirically shows the suitability of this new definition as a hardness measure
for some genetic programming benchmarks, including the multiplexer, the inter-
twined spirals problem and the royal trees.

1 Introduction

What makes a problem easy or hard for Evolutionary Algorithms? A first effort to an-
swer this challenging question has been done by Goldberg and coworkers (e.g., see
[3, 5]) in the field of Genetic Algorithms (GAs). Their approach consisted in construct-
ing functions that should a priori be easy or hard for GAs to solve. These ideas have
been followed by many others (e.g. [12, 4]) and have been the source of many hypothe-
ses as to what makes a problem easy or difficult for GAs. One concept that underlies
many of these approaches is the notion of fitness landscape [15]. A fitness landscape is a
plot where the points in the horizontal subspace represent the different individual geno-
types in a search space and the points in the vertical direction represent their fitness [9].
Individual genotypes are usually placed on the horizontal subspace according to a cer-
tain neighborhood structure. If genotypes can be visualized in two dimensions, the plot
can be seen as a three-dimensional surface, which may contain peaks and valleys. The
task of finding the best solution to the problem is equivalent to finding the highest peak
(for maximization problems). The problem solver is seen as a short-sighted explorer
searching for it. The fitness landscape plot can be helpful to understand the difficulty of
a problem, i.e. the ability of a searcher to find the optimal solution for that problem (see
for instance [17] for a deep analysis). Nevertheless, fitness landscapes are impossible
to be plotted in practice, given the generally huge size of the space of solutions and the
multi-dimentionality and complexity of the possible neighborhood structures. For this
reason, in the last few years researchers have been looking for an algebraic measure
able to capture some of the interesting properties of fitness landscapes. Early attemps
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are represented by [22, 11, 7]. A signicant contribution to this field has been given by
Jones [6] with the introduction of an hardness measure for GAs called fitness distance
correlation (fdc). This measure has been extended to tree-based Genetic Programming
(GP) and proven a suitable hardness indicator in [17, 16, 19, 20, 2]. Nevertheless, these
contributions have also shown that fdc has some flaws, the most important one being
the fact that fdc is not predictive, i.e. the optimal solution (or solutions) must be known
beforehand, which is almost unrealistic in applied search and optimization problems.
Thus, it is important to investigate other approaches based on quantities that can be
measured without any explicit knowledge of the genotype of optimal solutions. Prelim-
inary results of this enquiry can be found in [18], where a new measure called negative
slope coefficient (nsc) has been introduced.

This paper aims at extending and generalizing the study of nsc for tree-based GP.
It is structured as follows: section 2 introduces the concept of fitness cloud on which
nsc is based. Section 3 takes up the original definition of the nsc as it has been pre-
sented in [18] and section 4 points out its main limitations. Section 5 proposes a new
method for calculating the nsc and shows some experimental results pointing out that
this method enables to overcome some drawbacks of the original definition of the nsc.
Finally, section 6 offers our conclusions and hints for future research.

2 Fitness Clouds

Evolvability is a feature that is intuitively related, although not exactly identical, to
problem difficulty. It has been defined as the capability of genetic operators to improve
fitness quality [1]. The most natural way to study evolvability is, probably, to plot the
fitness values of individuals against the fitness values of their neighbors, where a neigh-
bor is obtained by applying one step of a genetic operator to the individual. Such a plot
has been first introduced for binary landscapes by Vérel and coworkers [21] and called
by them fitness cloud. In this paper, the genetic operator used to generate fitness clouds
is standard subtree mutation [8], i.e. mutation obtained by replacing a subtree of the
selected individual with a randomly generated tree.

2.1 Definition

Let Γ = {γ1,γ2, . . . ,γn} be the whole search space of a GP problem and let V (γ j) =
{v j

1,v
j
2, . . . ,v

j
mj } be the set of all the neighbors of individual γ j,∀ j ∈ [1,n]. Now let f be

the fitness function of the problem at hand. The following set of points can be defined:
S = {( f (γ j), f (v j

k)), ∀ j ∈ [1,n], ∀k ∈ [1,m j]}. The graphical representation of S on a
bidimentional plane, or fitness cloud, is the scatterplot of the fitness of all the individuals
belonging to the search space against the fitness of all their neighbors. The main idea is
that the shape of this scatterplot can give an indication of the evolvability of the genetic
operators used and thus some hints about the difficulty of the problem at hand. The
fitness cloud also implicitly gives some insight on the genotype to phenotype map: the
set of genotypes that all have equal fitness is a neutral set. Such a set corresponds to
one abscissa in the fitness/fitness plane; according to this abscissa, a vertical slice from
the cloud represents the set of fitnesses that could be reached from this set of neutrality.
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For a given offspring fitness value f̃ , an horizontal slice represents all the fitnesses from
which one can reach f̃ .

2.2 Sampling Methodology

In general, the sizes of the search space and of the neighborhoods do not allow one to
consider all the possible individuals. Thus, samples are needed. Since selection used
by GP is likely to eliminate bad individuals from the population, importance sampling
techniques must to be used. As in [17, 18], also in this work the well-known Metropolis-
Hastings technique [10] is used to sample the search space and the k-tournament selec-
tion algorithm [8] (with k = 10) is used to sample neighborhoods (see [17] for a detailed
motivation of these choices). Using random samples would assume that the space is rel-
atively uniform, e.g. that the measurement in one region of space (the sampled space)
applies to all regions of space (or at least a large enough percentage of the space). The
choice of important samplings has also been done to limitate this drawback. The termi-
nology of section 2.1 is thus updated: from now on, Γ represents a sample of individuals
obtained with the Metropolis-Hastings technique and, for each γ j belonging to Γ, V (γ j)
is a subset of its neighbors, obtained by the applying tournament selection.

3 Negative Slope Coefficient

The fitness cloud can be of help in determining some characteristics of the fitness land-
scape related to evolvability and problem difficulty. But the mere observation of the
scatterplot is not sufficient to quantify these features. In [17, 18] an algebraic measure
called negative slope coefficient (nsc) has been introduced. It can be calculated as fol-
lows: the abscissas of a scatterplot can be partitioned into k segments {I1, I2, . . . , Ik} of
the same length. From those segments, one can deduce the set {J1,J2, . . . ,Jk}, where
each Ji contains all the ordinates corresponding to the abscissas contained in Ii. Let
M1,M2, . . . ,Mk be the averages of the abscissa values contained inside the segments
I1, I2, . . . , Ik and let N1,N2, . . . ,Nk be the averages of the ordinate values in J1,J2, . . . ,Jk.
Then, the set of segments {S1,S2, . . . ,Sk−1} can be defined, where each Si connects the
point (Mi,Ni) to the point (Mi+1,Ni+1). For each one of these segments Si, the slope
Pi is defined as Pi = (Ni+1 − Ni)/(Mi+1 − Mi). Finally, the negative slope coefficient is
defined as nsc = ∑k−1

i=1 min (0,Pi). The hypothesis proposed in [18] is that ncs should
classify problems in the following way: if nsc= 0, the problem is easy; if nsc< 0 the
problem is difficult and the value of nsc quantifies this difficulty: the smaller its value,
the more difficult the problem. The idea behind this hypothesis is that the presence of
a segment with negative slope indicates a bad evolvability for individuals having fit-
ness values contained in that segment (see [17] for a detailed discussion on this issue).
Results shown in [18], using the previous definition, are encouraging, nevertheless the
technique used to partition the fitness cloud into segments was totally arbitrary: fitness
clouds were partitioned into a certain number of bins of the same size; the number
of segments and their size was chosen in an arbitrary way (10 segments of the same
size in [18]). This may have some undesirable consequences: for instance, segments
containing too few points may be generated (and thus the averages calculated on their
abscissas and ordinates may lack statistical significance). In the next section, we present
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some experiments showing that nsc calculated by partitioning the fitness cloud into a
fixed number of segments can give wrong indications about the difficulty of some GP
problems.

4 Limitations of the Original Definition

The nsc has been tested as a measure of problem hardness on a set of well-known GP
benchmarks, namely the multiplexer problem [8], the intertwined spirals problem [8]
and the royal trees [14]. These benchmarks have been chosen because nsc has never
been tested on them before and because they are problems of different nature and often
showing different behaviors. Below, we briefly describe these three benchmarks (see [8]
and [14] for a more detailed description) and the parameters used in the experiments.

k-Multiplexer. The problem is to design a Boolean function with k inputs and one
output. The first x of the k inputs can be considered as address lines. They describe the
binary representation of an integer number. This integer chooses one of the 2x remaining
inputs. The correct output for the multiplexer is the input on the line specified by the
address lines. The terminals are the k inputs to the function. The non-terminals are
the boolean operators AND, OR, NOT , IF . The raw fitness is calculated by counting
the number of correct outputs returned by the boolean function over all the possible 2k

inputs (fitness cases). Subtracting 2k to raw fitness makes this problem a maximization
one and dividing the result by 2k allows to normalize all fitness values into range [0,1].
Empirical results show that the difficulty of the multiplexer problem increases as the
number of inputs k increases.

Intertwined Spirals. The goal of this problem is to find a program to classify a given
point in the x−y plane as belonging to one of two well defined spirals. These two spirals
are defined by a set of 194 given points. The functions and terminals set used to build
this function are: F = {+,−,∗,//, IFLTE,SIN,COS} and T = {X ,Y,R }, where R
is an ephemeral random floating point constant ranging between −1 and 1 and // is a
protected division returning 1 instead of an error if the denominator is 0. In order to
calculate fitness, individuals are evaluated and mapped into 1 if they return a positive
value and into -1 otherwise. The fitness is calculated by subtracting 194 to the number
of correctly classified points, among the 194 points which define the spirals. In this way,
the problem is transformed into a maximization one and values are normalized into the
range [0,1] by dividing them by 194. Empirical results show that it is difficult for GP to
find a perfect solution to this problem.

Royal Trees. The language used to code individuals is composed by a set of functions
A, B, C, etc. with increasing arity (i.e. arity(A)= 1, arity(B) = 2, and so on) and a single
terminal X (i.e. arity(X) = 0). Royal trees are based on the concept of “perfect tree”,
which is a tree in which all the links are “perfect links”. A link is perfect if it joins a
node of arity n (at level l in the tree) with a node of arity n−1 (at level l −1). The fitness
of each tree is calculated by assigning a bonus to each perfect link and a penalty to each
non-perfect link. The global optimum is the perfect tree having the node with the max-
imum arity as root. In [14], Punch and coworkers have empirically shown that the diffi-
culty of royal trees increases as the maximum arity allowed for the tree nodes increases.
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Performance Measure and GP Parameters. Once a measure of hardness and the way
to compute it have been chosen, the problem remains of finding a means to validate the
prediction of the measure with respect to the problem instance and the algorithm. The
easiest way is to use a performance measure [13]. For the purposes of the present work,
performance is defined as being the proportion of the runs for which the global opti-
mum has been found in less than 500 generations over 100 runs. Even if this definition
is informal and prone to criticism, good or bad performance values correspond to our
intuition of what “easy” or “hard” means in practice. All GP runs executed to calculate
performance values have used the same set of GP parameters used in [17, 18]: gener-
ational GP, population size of 200 individuals, standard GP mutation used as the sole
genetic operator with a rate of 95%, tournament selection of size 10, ramped half-and-
half initialization, maximum depth of individuals equal to 10, elitism (i.e. survival of
the best individual into the newly generated population).

4.1 Experimental Results

Empirical results for the royal trees are not shown here for lack of space. Nevertheless,
they can be found in [17] and they confirm the consistency of the nsc as an hardness
indicator. Results for the multiplexer problem are summarized by figures 1(a) and 1(b)
and by table 1. Figure 1(a) as well as the first row in table 1 concern the 6 multiplexer
problem. For this instance of the problem, performance (p) of GP using only standard
mutation as a genetic operator is equal to 0.58 (which means that a global optimum has
been found in 58 runs over 100 before generation 500). Given that p is larger than 0.5,
this problem can be considered as an “easy” one for GP (even though, being the value
of p so close to 0.5, the term “uncertain” would probably be more appropriate). On the
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Fig. 1. Multiplexer problem, fitness cloud and segments. (a): 6 multiplexer. (b): 11 multiplexer.

Table 1. Multiplexer. Indicators related to scatterplots of figure 1.

scatterplot problem p nsc
Fig. 1(a) 6 multiplexer 0.58 -0.16
Fig. 1(b) 11 multiplexer 0 -0.24
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Fig. 2. Intertwined Spirals Problem. Fitness cloud with segments.

Table 2. Intertwined Spirals Problem. Indicators related to the scatterplot of figure 2.

scatterplot problem p nsc
Fig. 2 intertwined spirals 0 0

other hand, the value of the nsc is equal to -0.16, which means that, according to the
nsc measure, the 6 multiplexer problem should be difficult to solve. Thus, the nsc does
not give the correct indication about the hardness of this problem.

Figure 1(b) and the second row of table 1 concern the 11 multiplexer problem. For
this instance of the problem, no global optimum has been found by GP using mutation
over the 100 runs performed. Thus the problem is clearly difficult and, consistently, nsc
has a negative value.

The intertwined spirals problem is difficult to solve by GP. In fact, no optimum has
been found over 100 runs. On the other hand, as shown by figure 2 and table 2, the nsc
value is equal to zero, which means that, according to the nsc measure, the problem
should be easy. While the lack of reliability of the nsc reported in the case of the 6 mul-
tiplexer problem could eventually be considered as “marginal”, since GP performance
in that case is very close to 0.5 (and thus hardness is very difficult to measure), the
wrong indication on the intertwined spirals problem leaves no room for doubts: the nsc,
as it has been used in [18] and until now in this paper, cannot be used as a general hard-
ness indicator for GP. Thus, the next sections are dedicated to the definition of a new
technique for partitioning fitness clouds into segments, in order to assure a higher sta-
tistical significance to the set of points belonging to each segment. Successively, some
new empirical results are shown, confirming that the new partitioning technique allows
to overcome the nsc drawbacks presented here.

5 Size Driven Bisection

One of the most natural ways to automatically partition a fitness cloud into a set of
segments consists in applying the well-known bisection algorithm: as a first step, the
fitness cloud may be partitioned into two segments, each one containing the same num-
ber of points; then the algorithm may be recursively applied to each one of these two
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segments until at least one of the segments contains a smaller number of points than a
prefixed threshold. This technique has been tested and it has a major drawback: let the
size of a segment be defined as the difference between the rightmost and the leftmost
abscissas of that segment. After a few number of steps, very small bins (i.e. bins with
a very small size) may be generated (see [17], at page 162, for a practical case where
this problem arises). In such cases, if small segments have negative slopes, the nsc may
take very large values (around 106 in the example shown in [17], page 162). This is
clearly unacceptable, even in consideration of the fact that all the points included in-
side that segments give more or less the same information. In other words, a segment
of such a small size is clearly not a significant one. Such a pathologic situation man-
ifests very often if the bisection strategy is applied [17]. Thus, a different strategy is
needed.

In an informal way, one may say that the arbitrary criteria used in [18] and in
section 4 took into account the size of the segments, but not the number of points
they contain, while the bisection algorithm does exactly the opposite. In this section,
a technique which takes into account both the size of the segments and the number of
points they contain, called size driven bisection for brevity, is proposed. The starting
point of this algorithm is the same as for bisection: the fitness cloud is partitioned into
two segments, each of which contains the same number of points. After that, instead
of recursively applying bisection to both these segments, only the segment with larger
size is further partitioned. Partition is done, once again, by bisection, i.e. the segment
is partitioned into two bins, each one containing the same number of points. The algo-
rithm is iterated until one of the two following conditions is satisfied: either a segment
contains a smaller number of points than a prefixed threshold, or a segment has become
smaller than a prefixed minimum size. In this paper, as a first approximation, 50 has
been chosen as a threshold for the number of points belonging to a bin, and the 5% of
the distance between the leftmost and the rightmost points in the fitness cloud has been
chosen as the minimum size of a segment.

5.1 Experimental Results

Empirical results for the multiplexer problem using size driven bisection are summa-
rized by figures 3 and table 3. Figure 3(a) and figure 3(b) as well as the first row in
table 3 concern the 6 multiplexer problem. This time, the value of the nsc is equal to
0 and this value is consistent with the fact that GP performance is > 0.5. Neverthe-
less, figure 3(b) (containing standard deviations of the same points as in figure 3(a))
shows that the slope of some segments is not statistically significant. Our interpretation
of it is that, since the GP performance value is near 0.5, it is difficult to state if the
problem is “easy” or “hard”. We could informally say that it is “moderatedly easy” or
maybe “uncertain” and the standard deviations of some segments seem to confirm this
“uncertainty”.

Figures 3(c) and 3(d) and the second row of table 3 concern the 11 multiplexer
problem. The nsc calculated with the size driven bisection has a negative value and, this
time, standard deviations leave few chances to segment slopes to change. In conclusion,
nsc using size driven bisection seems a reasonable hardness indicator for the multiplexer
problem.
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Fig. 3. Multiplexer problem. (a): 6 multiplexer, fitness cloud and segments. (b): 6 multiplexer,
segments with standard deviations. (c): 11 multiplexer, fitness cloud and segments. (d): 11 multi-
plexer, segments with standard deviations.

Table 3. Multiplexer. Indicators related to scatterplots of figure 3.

scatterplot problem p nsc
Fig. 3(a) and (b) 6 multiplexer 0.58 0
Fig. 3(c) and (d) 11 multiplexer 0 -0.21

Figure 4 shows the scatterplot and segments with their standard deviations for the
intertwined spirals problem. Table 4 shows that the value of the nsc calculated using
size driven bisection is negative. Standard deviations confirm that all the segment slopes
are statistically significant. We conclude that nsc gives reasonable indications on the
hardness of this problem too.

Finally, figures 5(a), 5(b) and 5(c) show the scatterplot and segments for the royal
tree problem in the case where F = {A,B}, F = {A,B,C} F = {A,B,C,D}. In these
cases, performance values (p) confirm that the problem is easy for GP. The first
three rows of table 5 show that nsc is equal to zero in all these cases. Furthermore
(see figures 6(a), 6(b) and 6(c)) standard deviations confirm that all the segment slopes
are statistically significant. On the other hand, if E , F and G nodes are added to the set
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Fig. 4. Intertwined Spirals Problem. (a) : Fitness cloud with segments. (b) : Segments with stan-
dard deviations.

Table 4. Intertwined Spirals. Indicators related to scatterplots of figure 4.

scatterplot problem p nsc
Fig. 4(a) and (b) intertw. spirals 0 -0.41
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Fig. 5. Royal tree problem. Fitness clouds with segments. (a): F = {A,B}. (b): F =
{A,B,C}. (c): F = {A,B,C,D}. (d): F = {A,B,C,D,E}. (e): F = {A,B,C,D,E,F}. (f):
F = {A,B,C,D,E,F,G}. Note the change in the axis scale as the F set increases in size.

of possible function nodes, the problem becomes difficult (since performance is equal
to zero, as shown by the last three rows of table 5). Consistently, the nsc becomes more
and more negative for these instances of the problem. Figures 5(d), 5(e) and 5(f) show
scatterplots and segments for these three instances and figures 6(d), 6(e) and 6(f) show
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Table 5. Royal trees. Some data related to scatterplots of figure 5.

scatterplot root p nsc
Fig. 5(a) B 1 0
Fig. 5(b) C 0.91 0
Fig. 5(c) D 0.72 0
Fig. 5(d) E 0 -0.17
Fig. 5(e) F 0 -0.21
Fig. 5(f) G 0 -0.32
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Fig. 6. Royal tree problem. Segments with standard deviations. (a): F = {A,B}. (b): F =
{A,B,C}. (c): F = {A,B,C,D}. (d): F = {A,B,C,D,E}. (e): F = {A,B,C,D,E,F}. (f): F =
{A,B,C,D,E,F,G}. Note the change in the axis scale as the F set increases in size.

the respective standard deviations. Once again, nsc values correctly indicate the relative
order of GP problem hardness.

6 Conclusions and Future Work

The negative slope coefficient (nsc) is not a reliable measure of problem hardness if
the fitness cloud is partitioned into segments in an arbitrary way. In this paper, a new
way of partitioning fitness clouds, called size driven bisection, has been presented. It
represents a suitable tradeoff between the size of segments and the density of points in
the partitions. The nsc using size driven bisection gave reliable indications about the
hardness of two instances of the multiplexer problem, the intertwined spirals problem
and six instances of the royal trees problem. Furthermore, the nsc using size driven
bisection gave reliable indications on some other typical GP benchmarks (such as the
artificial ant on the Santa Fe trail, the even parity and one particular instance of the
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symbolic regression) and on trap functions (these results have not been shown here
for lack of space. They are presented in [17]). These results encourage us to continue
the study of nsc, with further tests on more “real life” GP problems. This paper leaves
some open problems: first of all, it is based on statistical samplings of the search space
and thus counterexamples can surely be built for this measure. Furthermore, and even
more importantly, no technique has been found yet to normalize nsc values into a given
range, in order to enable comparisons between the difficulties of two or more problems
of different nature. Only the hardness of different instances of the same problem can be
calculated using nsc, as defined here.
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Abstract. This paper proposes an approach to reducing the cost of fit-
ness evaluation whilst improving the effectiveness in Genetic Program-
ming (GP). In our approach, the whole population is first clustered by a
heuristic called fitness-case-equivalence. Then a cluster representative is
selected for each cluster. The fitness value of the representative is calcu-
lated on all training cases. The fitness is then directly assigned to other
members in the same cluster. Subsequently, a clustering tournament
selection method replaces the standard tournament selection method.
A series of experiments were conducted to solve a symbolic regression
problem, a binary classification problem, and a multi-class classification
problem. The experiment results show that the new GP system signifi-
cantly outperforms the standard GP system on these problems.

1 Introduction

Fitness evaluation in Evolutionary Computation (EC) is the most time consum-
ing operation [1, 2]. Reducing the fitness evaluation cost is key to improving
the efficiency of EC and has attracted an increasing amount of interest in both
Genetic Algorithms (GAs) and Genetic Programming (GP).

There have been quite a few approaches in GAs aiming at reducing the cost
of fitness evaluation. Sastry et al [3] introduced fitness inheritance and showed
some very promising results for OneMax problems. Kim and Cho [4] used a
k-means algorithm to cluster the whole population and used Euclidean distance
to estimate the fitness values of other cluster members from the fitness value
based on the cluster representative. Their method was tested on the Griewangk
function, the De Jong functions, the Rastrigin function and the Schwefel func-
tion. Jin and Sendhoff [5] also used a k-mean algorithm to cluster the whole
population. Only the chromosome closest to the cluster centre was evaluated.
Fitness values of other chromosomes were estimated by a neural network ensem-
ble. Their approach was tested on the Ackley function, the Rosenbrock function,
and the Sphere function. Ziegler and Banzhaf [2] used a meta-model of the fitness
function to replace the time consuming evaluations during tournament selection
in analysing evolving walking patterns for quadruped robots.

However, in GP, previous methods for reducing fitness evaluation cost have
been limited to fitness case selection. Altenberg and Tackett [6, 7] used a small
fraction of training fitness cases to evaluate a large number of offspring produced
by their brood recombination crossover operator. Giacobini et al [1] used a sta-
tistical method to select a fraction of all fitness cases to evaluate programs in

P. Collet et al. (Eds.): EuroGP 2006, LNCS 3905, pp. 190–201, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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order to reduce the computational cost. They introduced the use of a concept
called entropy in their study and concluded that once the number of fitness cases
is greater than the entropy, a normal convergence behaviour can be observed in
their boolean function and discrete step function problems.

Recently, Jackson [8] introduced a fitness evaluation avoidance method to
avoid evaluating offspring generated by so-called fitness-preserving crossover. In
his method, all nodes in a program are initially marked as not-visited. When
a fitness case is fed to a fitness function and causes a node of the program to
be evaluated, the node is then marked as visited. If a program P1 is selected
for crossover and the root of a sub-tree from another program P2 replaces a
not-visited node of P1, then the generated child cannot act differently from its
parent P1, as the inserted sub-tree will never be executed. Therefore, there is
no need to re-evaluate the fitness of the offspring. The method’s effectiveness
depends on the fraction of nodes in the programs that are not evaluated for any
of the fitness cases. For the boolean function set that Jackson used, this fraction
is high; for function sets with no if or short-circuited boolean operators, the
fraction would be low, and other techniques for fitness evaluation are needed.
This paper describes a technique based on clustering.

Since clustering a population and estimating cluster fitness values based on
cluster representatives have been well tested on GAs, we hypothesised that these
may also be applicable to GP. However, given the high diversity, complexity,
and flexibility of program presentations, clustering programs may not be as
straightforward as in GAs.

1.1 Goals

The goal of this study is to develop an approach to clustering the whole popula-
tion in GP that can be used to reduce the fitness evaluation cost. A side-effect of
clustering the population is that the clusters also enable alternative approaches
to selecting programs for crossover and mutation. A secondary goal of this study
is to investigate the effect of using these clusters to improve the selection operator
for crossover. The critical research questions are the following:

– What measurement can be used for generating the clusters from the whole
population?

– How can the fitness value of the members in the cluster be estimated?
– How will this approach affect the system performance?

2 Our Approach

Figure 1 gives an overview of our approach and shows the relationships between
the major components, especially 1) population clustering; 2) fitness evaluation
and assignment; and 3) clustering tournament selection for crossover. Other
standard components of GP are not detailed in the figure.

The central idea of our approach is based on the observation that two pro-
grams that are equivalent (in the sense that they compute the same function of
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Fig. 1. Overview and relationship between the major components in this approach

their inputs) must necessarily have the same fitness value. If we could identify
clusters of equivalent programs, then it would only be necessary to evaluate the
fitness of one program in each cluster, and use the same fitness value for all the
other programs in the cluster, avoiding the cost of evaluating the fitness of the
other programs in the cluster.

In fact, it is sufficient that the programs in the cluster compute the same
output values on all the training fitness cases, regardless of their output values
on other inputs, since the fitness of a program depends only on its outputs on
the fitness cases. We call such programs “fitness-case-equivalent”. “fitness-case-
equivalence” is actually more useful than true equivalence since the clusters may
be larger, and therefore generate greater saving.

The problem with this idea is that the obvious way of determining fitness-case-
equivalence requires evaluating all the programs on all the fitness cases, which is
the very time consuming computation that we are trying to avoid. Instead, we
use a heuristic estimate of fitness-case-equivalence, based on evaluating programs
on a small number of the fitness cases, making the heuristic assumption that
programs that generate the same output values on a small random set of the
fitness cases are likely to be equivalent on all fitness cases. The determination of
the clusters is woven into the fitness evaluation so that no unnecessary fitness
evaluations are performed.

Once the fitness of each cluster has been computed, a cluster-based tourna-
ment selection method replaces the standard tournament selection method to
select programs for crossover.

Since clustering is the key aspect of the new approach, we refer to it as the
clustered GP system (CGP). The rest of this section describes the details of CGP.

2.1 Population Clustering

At each generation during the evolutionary process, the algorithm starts by
treating the entire population as a single cluster. Then it feeds the first training
case into the programs and partitions the cluster into new clusters based on
the program outputs. For each newly formed cluster, the partitioning process
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is applied again with the next fitness case until no new cluster is formed. The
algorithm currently assumes that it has seen enough training cases to deter-
mine a cluster once all the programs in a cluster have the same output in two
successive training cases. To reduce the chance of premature stopping where a
cluster contains non-fitness-case-equivalent programs, the algorithm presents the
training cases in a different random order in each generation.

The population clustering algorithm is outlined in Figure 2 and illustrated
below using a simple one-variable symbolic regression example.

– initialisation: Treat the initial population consisting of 6 programs as one
big cluster and randomise the order of the fitness cases.

– Iteration 1: Feed the first fitness case x=2 to each program. The program out-
puts are 4, 4, 4, 1, 1, and 1 respectively, which leave us with two
sub-clusters, one with the program output of 4 and the other with 1. The
initial cluster is replaced by the two sub-clusters.
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– Iteration 2: Feed the second fitness case x=6 to the programs in each sub-
cluster. The outputs of programs in sub-cluster1 are 12, 12, and 8. There-
fore, the sub-cluster is further partitioned into two sub-sub-clusters, one
with programs with output value 12, the other holding a program with an
output value of 8. Similarly, sub-cluster2 is partitioned into two new sub-
sub-clusters. Now we have four clusters (sub-sub-clusters1, 2, 3, 4).

– Iteration 3: Feed the third fitness case x=10 to programs in each sub-sub-
cluster. According to the program outputs, the same set of clusters remains.
As no new cluster is formed, the partitioning process completes.

2.2 Fitness Evaluation and Assignment

Upon completing the population clustering, we progress to the fitness evaluation
stage. For each cluster, the program with the least program complexity is chosen
as the cluster representative. In this study, the number of nodes is used as a proxy
for program complexity, that is, the program with the smallest number of nodes
will be selected as a representative for a given cluster. The fitness value of the
cluster representative is calculated from the result of evaluating the program
on all the training cases (cases evaluated during the clustering stage are not re-
evaluated). As all members in a cluster are assumed to be fitness-case-equivalent,
the fitness of each cluster representative is directly assigned to the cluster and
to all the other members of the cluster.

2.3 Clustering Tournament Selection for Crossover

We use a standard tournament process for selecting programs for crossover. A
standard method in GP systems is to randomly choose a set of programs for each
tournament, and use the highest fitness program in each tournament for crossover.

A key issue in selection for crossover is preserving diversity. In CGP, the pro-
grams in each fitness-case-equivalent cluster have some kind of similarity, though
not necessarily in their program structure. Therefore, to preserve diversity in the
crossover process, we ensure that the two parent programs in a crossover are from
different clusters, and we choose programs for crossover in a way that ensures
each cluster (rather than each program) has equal probability of being selected.
To accomplish this, CGP randomly selects clusters for tournaments (without
replacement [9]), and then selects a random program from each winning cluster
for crossover.

In contrast, in our standard GP system, programs for tournaments are chosen
at random, without replacement, from the set of all programs.

3 Experiment Design and Configuration

To evaluate the effectiveness of CGP, we compared the performance (both ef-
fectiveness and efficiency) of CGP against that of a standard GP system (SGP)
that had the same function set, terminals, and parameters as CGP except that
it did not cluster the population of programs. We applied both systems to three
different tasks in different domains.
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3.1 Data Sets

We used three problems of increasing difficulty: a regression problem, a binary
classification problem, and a multi-class classification problem.

The symbolic regression problem (SR) is shown in equation (1). We generated
100 fitness cases by choosing 100 values for x from (-10,10] with step 0.2.

f(x) =
{

x2 − x , x ≥ 0
sin(x) + 1

x , x < 0 (1)

The binary classification problem (BC) is to classify two texture classes. A tex-
ture data set maintained by the Signal & Image Processing Institute at the Uni-
versity of Southern California (http://sipi.usc.edu/services/database/) is
used in this example. We chose the two texture images, wood grain, and herring-
bone weave (see figure 3) from the texture data set because they are quite similar
in many aspects and characters, and therefore harder to distinguish. The images
are both 512×512 pixels and monochrome. We extracted 80×80 pixel cutouts
from each image, taken every at 30 pixel steps, giving a total of 450 samples.

a) Wood Grain b) Herringbone Weave

Fig. 3. Sample images in the texture data set

The multi-class classification problem (MC) is to classify distorted English
letter images. A letter image data set from [10] was used for this problem. The
image data set was generated by randomly distorting pixel images of the 26
upper case English letters from 20 different commercial fonts, including script,
italic, serif, and Gothic. In this study, the four letters B, D, E, and R were selected
from the data set because these letters were particularly difficult for humans to
distinguish. All instances of the chosen letters were extracted from the original
database: 766 samples for letter B, 805 samples for letter D, 768 samples for letter
E, and 758 samples for letter R, giving 3097 samples in total. More information
about the letter image data can be found in [10].

For BC and MC, the data sets were randomly partitioned into equal sized
training and test sets.

3.2 Function Sets

The function set used for all three problems is

{ +, −, ∗, /, abs, sqrt, sin, if } (2)
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The first four operators are the standard arithmetic binary operators, except
that the / operator represents “protected” in which a divide by zero gives a
result of zero. abs, sqrt, and sin are the standard real-valued unary operators.
The if function takes three arguments and returns its second argument if the
first argument is positive, and returns its third argument otherwise. All functions
return zero if they encounter an invalid argument.

3.3 Terminal Sets

We have three terminal sets, one for each problem. Each terminal set includes
real valued constants in the range [-1.0, 1.0], but the probability assigned to the
whole range of constants when constructing or mutating programs, is equal to
the probability assigned to each of the other discrete terminals.

The terminal set for SR consists of the single variable x, in addition to the
range of constant values.

The terminal set for BC includes four pixel statistics as features: mean(μ),
standard deviation(σ), skew, and kurt. The skewness of the pixel distribution of
an image is used to characterise the degree of asymmetry of the pixel distribution
around its mean and the kurtosis of the pixel distribution of an image is used to
measure the relative peakedness or flatness of the pixel distribution. Equation 3
lists the formulas to calculate them, where xi is the ith pixel value and N is the
total number of pixels, in a training image.

skew(x) =
N
i=1 (xi−μ)3

Nσ3 kurt(x) =
N
i=1 (xi−μ)4

Nσ4 (3)

The terminal set used in MC includes the same 16 primitive numerical features
of a letter image used in [10].

3.4 Fitness Function

The fitness function in the symbolic regression problem is the RMS error of the
outputs of a program relative to the expected outputs for each fitness case. The
fitness function for the classification problems is the classification error rate on
the training data set. The classification error rate of a program is the fraction
of fitness cases that are incorrectly classified by the program as a proportion of
the total number of fitness cases in the training data set. In all three problems,
the best fitness value is zero.

For the texture binary classification problem, the program classifies the fitness
case as wood grain if the output of the program is negative, and herringbone
weave otherwise. For the letter multi-class classification problem, we use the
following classification rule:

class =

⎧⎪⎪⎨
⎪⎪⎩

letter B , output ≥ 8
letter D , 4 ≤ output < 8
letter E , 2 ≤ output < 4
letter R , output < 2

(4)
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3.5 Genetic Parameters and Termination Criteria

The population size for SR is 200, for BC is 500 and for MC is 2000 according to
the increasing difficulty. Table 1 lists some shared common genetic parameters
for the three problems.

Table 1. Genetic parameters for problems

Creation type ramped half and half Crossover rate 85%
Min. depth for creation 3 Mutation rate 10%
Max. depth for creation 5 Reproduction rate 5%
Max. generations 200 Tournament size 4

The learning/evolutionary process is terminated when either the problem has
been solved (there is a program with a fitness of zero) or the number of genera-
tions reaches the pre-defined maximum.

3.6 Experiment Configuration

We ran an experiment comparing CGP to SGP for each of the three problems.
In each experiment, we repeated the whole evolutionary process 100 times for
both CGP and SGP. Therefore there are 100 pairs of runs in each experiment
and 300 pairs of runs in total.

We ran all experiments sequentially on a single Sun Ultra server with 2GB
memory. Although slower than using a server/client computing network, this
reduced the possible effects of hardware differences and other users on the per-
formance measurements.

4 Results and Analysis

This section presents the experimental results of CGP and SGP on the three
problems. We investigated the effectiveness and the efficiency of CGP using
several measurements.

4.1 Effectiveness of CGP

In order to investigate the effectiveness of our approach, we first measured the
fraction of runs that successfully returned an optimal solution within the given
number of generations. Table 2 summarises the completion rate for all problems
in both systems.

In terms of completion , CGP outperformed SGP by a factor of 2.7 for SR
and a factor 1.8 for BC. We think these significant improvements are due to
the well maintained population diversity that is implicitly affected by the new
clustering tournament selection method.

Due to the difficulty of the MC problem, neither system produced any com-
pleted runs, so the classification error rate was used to compare the performance
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Table 2. Completion rate(%)

SR BC MC
CGP 55 29 0
SGP 20 16 0
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Fig. 4. Fitness for MC

of the two systems. Figure 4 demonstrates the patterns of average error rates of
100 runs for all generations. The patterns of both systems on both the training
set (top panel) and the test set (bottom panel) are very similar. Except for a
short period at the beginning, the error rate of CGP is consistently lower than
that of SGP from the 23rd generation onwards, but the difference is quite small.
Note that the error graphs do not have a 0 baseline.

The results suggest that using our heuristic estimate of fitness-case-equival
ence to cluster does not reduce the accuracy or effectiveness of GP. On the con-
trary, when the clusters based on heuristic fitness-case-equivalence are used to
select programs for crossover, the accuracy and effectiveness of GP is actually
increased, quite significantly in the case of the two simpler problems.

4.2 Efficiency of CGP

The primary goal of the study was to increase efficiency of GP, without loss of
effectiveness, by avoiding the need to evaluate all programs on all fitness cases.

Table 3 summarises the average number of programs evaluated in each system
for each problem. The table shows that for all three problems, the number of
programs evaluated in CGP are fewer than in SGP. For the two simpler problems,
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Table 3. Average number of programs evaluated (1000’s)

SR BC MC
CGP 22 ± 9 72 ± 27 330 ± 15
SGP 36 ± 9 91 ± 23 400
Reduction: 39% 21% 17%

this reduction in the number of evaluations (39% and 21% respectively) is a
result of two factors — avoiding evaluation on most fitness cases for all but
the simplest program in each cluster, and the reduction in the total number
of generations required. For the MC problem, all evolutionary runs took the
maximum 200 generations, so the saving of approximately 17% is due entirely
to the the evaluation avoidance.

The results clearly show that using the heuristic estimate of fitness-case-
equivalence to cluster a population can efficiently reduce the number of programs
that need to be evaluated.

To identify roughly how much of the reduction in program evaluations resulted
from the reduction in the number of generations, Table 4 summarises the average
number of generations used for each of the first two problems in each systems.
These results suggest that around half of the saving is due to the reduction in
generations, and half the saving is due to the program evaluation avoidance.

It is also of interest that as the problem difficulty increases, the reduction
in the number of program evaluations decreases. We suspect that this may be
related to the impact of the real-valued constants in programs — more constants
in programs will reduce the chance of programs being fitness-case-equivalent. The
particular symbolic regression problem in SR does not require any real-valued
constants for an optimal solution, which may increase the number of fitness-case-
equivalent programs compared to the BC and MC problems that require more
real-valued constants.

Table 4. Average number of generations used

SR BC
CGP 145 ± 63 164 ± 62
SGP 179 ± 47 184 ± 47
Reduction: 19% 11%

However, the number of program evaluations is not the whole story on ef-
ficiency. For example, there is some overhead in performing and recording the
clustering. Therefore, we also measured the average CPU time, to investigate
whether this overhead was worthwhile. Table 5 summarises the average CPU
time used for each problem with each system.

The results were surprising: there is some reduction in CPU time (about 12%)
for the SR problem, but only a negligible reduction for BC and MC. Although our
implementation of the clustering has not been highly optimised, it was hard to
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Table 5. Average CPU time used (second)

SR BC MC
CGP 7.2 ± 4.1 73 ± 29 3,600 ± 1,000
SGP 8.2 ± 3.5 74 ± 22 3,600 ± 650
Reduction: 39% 21% 17%

see how the overhead of the clustering could have swamped the quite significant
reduction in number of program evaluations (usually the most expensive part
of the GP process) in this way. We need to do further investigation to identify
the cause, but preliminary analysis of the actual programs generated in the
two systems suggests that the CGP system is creating larger and more complex
programs than the standard system, presumably because of the greater diversity
that the clusters are preserving. This may be part of the explanation of the
increased effectiveness of CGP, but may also explain the lack of reduction in CPU
time — larger programs have a higher evaluation cost than smaller programs, so
that a smaller number of larger programs may require the same evaluation time
as a larger number of smaller programs.

5 Conclusions and Future Work

The paper has discussed our method for reducing the fitness evaluation cost and
improving the effectiveness using a clustering approach in GP. Our clustered GP
system is compared with the standard GP system on three problems of increasing
difficulty. The results showed that CGP is more effective than SGP, and reduces
the number of program evaluations significantly. CGP was more efficient than
SGP on the simplest task, but the saving in CPU time was negligible for the
more complex tasks.

We have successfully demonstrated that using the heuristic estimate of fitness-
case-equivalence is effective for clustering programs in GP and that the fitness
values of cluster representatives can be directly used for other cluster members
without any further manipulations. Clusters can also be used to improve the
tournament selection for crossover, and sequentially to effectively maintain the
population diversity.

We are currently investigating the reason for the negligible saving in CPU
time to determine whether this is simply due to the overhead in our unoptimised
implementation of the clustering algorithm, or whether it is due to a change in
the programs that CGP generates.

A limitation of the current system is the weak heuristic criteria for deter-
mining when the clustering algorithm has considered sufficient training cases
to be confident that the programs in a cluster are fitness-case-equivalent. We
will investigate a statistical measures that are less dependent on the order of
presentation of the training cases.
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Abstract. The use of Constructive Induction (CI) methods for the gen-
eration of high-quality attributes is a very important issue in Machine
Learning. In this paper, we present a CI method based in Genetic Pro-
gramming (GP). This method is able to evolve projections that transform
the dataset, constructing a new coordinates space in which the data can
be more easily predicted. This coordinates space can be smaller than the
original one, achieving two main goals at the same time: on one hand, im-
proving classification tasks; on the other hand, reducing dimensionality
of the problem. Also, our method can handle classification and regres-
sion problems. We have tested our approach in two financial prediction
problems because their high dimensionality is very appropriate for our
method. In the first one, GP is used to tackle prediction of bankruptcy
of companies (classification problem). In the second one, an IPO Under-
pricing prediction domain (a classical regression problem) is confronted.
Our method obtained in both cases competitive results and, in addition,
it drastically reduced dimensionality of the problem.

1 Introduction

The idea of projecting data spaces into other, more relevant, spaces in order to
improve classification tasks has been widely used under many names. For in-
stance, Support Vector Machines implicitly project data into a high number of
dimensions (even infinite) by means of kernel functions, so that they are more
easily separable [1]. In other cases, projections are used to reduce the number of
dimensions, and in many cases, to improve classification accuracy (Fisher Lin-
ear Discriminant [2], Principal Component Analysis, . . . ). Similarly, projections
can construct relevant attributes from low-level attributes or to reformulate the
pattern recognition problem by constructing more relevant features (feature in-
duction or constructive induction [3, 4, 5]). These new features can be either
added to the original attribute set, or replace them.

However, most projections are closed-forms (linear, polynomial, . . . ). It would
be interesting to obtain the most appropriate projection for the case at hand,
given a set of primitives. In this paper, we have used Genetic Programming to
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do so [6]. Genetic Programming is a stochastic population-based search method
devised in 1992 by John R. Koza. It is inspired in Genetic Algorithms, being
the main difference with them the fact that in the later, chromosomes are used
for encoding possible solutions to a problem and making them evolve until con-
verging to a valid solution. GP, nevertheless, proposes the idea of evolving whole
computer programs. Within the scope of Evolutionary Algorithms, it exists a
main reason for using GP in this problem: A projection is, in essence, a mathe-
matical formula and so, its size and structure are not defined in advance. Thus,
finding a codification that can fit a GA is a difficult problem. GP, nevertheless,
does not impose restrictions to the size of evolved structures. There is another
reason for using GP: their results are sometimes surprising, and may find some
projection a human programmer might not think about. Finally, an advantage of
GP is that some domain knowledge can be injected by selecting relevant primi-
tives, whereas other Machine Learning methods use a predefined, non-modifiable
set (ANN, attribute comparisons in ID3, . . . ).

In this paper, we present a GP-based method for finding projections that
increase, leave equal, or decrease the data space dimensions, so that prediction
in the projected space is improved. In classification tasks, fitness is determined
by computing the degree of linear separation of data in the projected space. This
has been implemented as a linear perceptron. We believe that, although more
powerful classification methods (like C4.5 [7] , SVM, or NN) could be used,
choosing a predictor with few degrees of freedom is an important decision: if
GP is able to evolve any projection, and then a powerful classification scheme
can separate the projected data using complex surfaces, there is a large risk of
overfitting. Of course, there are other ways of preventing overfitting, both in GP
and in the classification method, but we prefer to try simplest approach first.
In addition, using simple methods means that fitness computation will be fast,
which is important in evolutionary computation. Also, other simple classification
methods (like nearest neighbor) could be used, and will be tested in the future.
In regression tasks, we use a similar idea: a linear regression model is built for
the projected data and NMSE error is used as fitness measure.

The structure of the rest of the paper is as follows. Section 2 describes the
approach. Section 3 introduces two important financial domains: the bankruptcy
prediction and the IPO underpricing predicion. Then, Section 4 applies the
method to these financial domains. Next, Section 5 reports on the related work.
And finally, Section 6 draws some conclusions and describe possible future re-
search directions.

2 Description of the Method

We will learn from a set E of n examples expressed in a space U of N dimensions.
Our objective is to be able to represent the examples in the space V , of P (pro-
jected) dimensions, and in which the examples will be linearly separable. Or, if the
goal is numerical prediction (i.e. regression), then our aim is to project data so that
they can be approximatedby a linear regression.To include both cases, we will talk
about linear behavior. P can be larger, equal, or smaller than N .
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Anyway, the use of projections does not exclude the possibility of using this
method with a set of examples expressed in a space U in which they already ex-
hibit linear behavior. In this case, our method can generate projections that take
the examples to a space V of a smaller number of dimensions than U but main-
taining linear behavior. Thus, our method can have two different applications: on
one hand, the improvement of prediction tasks by means of a transformation of
the data set (towards higher, equal, or lower dimensionality); on the other hand,
the reduction of dimensionality by constructing new attributes that are as good,
at least, as the original ones. Of course, any combination of both applications
fits our approach.

Our method uses standard GP to evolve individuals made of P subtrees (as
many of dimensions of the projected space V ). Fitness is computed by measuring
the degree of linear behavior after applying the individual to the original data
(in fact, projecting from U to V ). The system stops if a 100% linear behavior has
been achieved or if the maximum number of generations is reached. Otherwise,
the system outputs the individual that predicted better the training data.

For the implementation of our application, we have used Lilgp 1.1 [8].

2.1 Terminal and Function Set

In our problem, terminal set will be formed by the attributes of the problem
expressed in coordinates of U (u0,u1...,uN), and by the so-called Ephemeral
Random Constants, which are randomly generated numerical constants that the
program can use.

The set of functions to use is difficult to determine: it must be sufficient
for, along with the set of terminals, being able to express the solution to the
problem, but they must not be too many as for uselessly increase the search
space. Of course, for different domains, different terminal and function sets will
be more appropriate. We consider that the fact that they can be choosen is an
advantage of GP over other methods. At this point, we have tested some generic
sets, appropriate for numerical attributes:

– Basic arithmetical functions: +, -, *, and /
– Square and square root.

2.2 GP Individuals

Instead of having individuals that work with vectorial data and return a vec-
tor of P dimensions, every individual will contain P subtrees, using the same
set of functions and terminals, that will be run independently. Thus, a projec-
tion is going to consist of a series of trees labelled (v0,v1...,vM ) that represent
combinations of all the terminals (u0,u1...,uN ) and functions. Actually, we use
the lil-gp mechanism for ADF (Automatically Defined Functions). That is, an
individual is made of P ADF’s and no main program. It is the fitness function
that calls each one of the independent (non-hierarchical) ADFs. It is important
to remark this issue because crossover is homologous, in the sense that subtree
vi from individual a will cross with subtree vi of individual b. This makes sense,
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because if different features in V are independent and even orthogonal, subtrees
in vi will not be useful for subtrees in vj , and vice versa. If it is suspected that
different features migh share some code, the standard ADF approach (i.e. ADFs
common to the P main subtrees) would be more efficient [9]. We will test the
ADF approach in the future, but we believe that it is better to separate both
approaches conceptually and experimentally.

2.3 The Fitness Function

We already have introduced the basic mechanism of the fitness function. It takes
the examples expressed in space U , project them using the GP individual, and
obtain a point in space V with P coordinates. Next, the degree of linear behavior
must be determined. If the task is classification, a Simple Linear Perceptron (SP),
Adaline or a Fisher linear discriminant could be applied to determine the degree
of linear separability. In this paper, a SP has been used because it is very fast. We
have preferred to use simple classification schemes in order to avoid overfitting:
if both GP projections and the classification scheme have a lot of degrees of
freedom, overfitting should be expected. The perceptron is run for 500 cycles
(experimentally we have checked that this is enough). If the SP converges, the
projection would be producing a linear separation of the data and it would be
the solution to the problem. If the SP does not converge, the fitness assigned to
the individual is the number of examples that the SP has been able to correctly
classify in the best cycle: if projected data is not linearly separable, the SP will
oscillate. Storing the best value guarantees stability of the fitness value. This
way, fitness measure is gradual enough and has the resolution necessary to be
able to exert a real selective pressure.

In case the goal is a regression task, a simple linear regression algorithm will
be used to determine linearity. In particular, we use the normalized mean square
error of the projected data.

3 Description of the Financial Domains

The bankruptcy prediction and the IPO underpricing prediction are two impor-
tant financial problems that we tackle in this work. The high dimensionality of
both problems makes them very suitable for testing our method. In this section
we will describe these domains.

3.1 Bankruptcy Prediction

Predicting when a company is facing bankruptcy is a difficult and interesting
problem that requires a good knowledge of the company [10]. This problem
has traditionally been faced by experts applying heuristic rules. More recently,
automatic approaches have been used; Some effort have been done in applying
Artificial Neural Networks (ANN) to this kind of prediction problems [11, 12, 13].
These approaches take advantage of the capacity of ANNs to find non-linear
relationships between variables of the problem. In [14] a training algorithm for
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classifying high dimensional data using Multilayer Perceptrons is applied to this
problem. In [12], they use a model based on Genetic Algorithms for extracting
rules that are easy to understand by users.

Our model also uses an Evolutive Computing approach. By means of a Ge-
netic Programming engine, it generates projections that transform data into a
new coordinate system. In this new space, data can be more easily treated, sim-
plifying the classification task. This transformation of the data usually will imply
a variation in the number of dimensions of the problem. Thus, our approach tries
to improve the prediction rates and reduce the dimensionality of the problem at
the same time. We explained our method more deeply in Section 2.

3.2 IPO Underpricing Prediction

An IPO is the first public stock offering of a company. It has been documented
for many years the existence of important variations on the price of the IPOs
in the first day of trading. This variations usually come as price gains, which
means that the price of an IPO at the end of the first trading day is usually
greater than the initial price [15]. The problem for the company is that it is very
difficult to accurately price an IPO: the company has little or no information
about demand, acceptance, competitive response and many other factors that
should influence in the IPO pricing. Once the issue price is selected, the company
is committed to maintain this price for the entire offering. If the final price is
significantly over or under the IPO issue price, company will suffer important
losses in the form of underpricing or overpricing (for more information about
underpricing/overpricing looses, reader can refer to [10]). Thus, it is vital that
the company and its investment bankers price the IPO as closely as possible to
the final price.

This has been the motivation of a vast amount of Academic Work contributed
in the last 30 years. Most of the proposed approaches consists in statistical meth-
ods such as multiple linear regression. Jain and Nag apply in [16] an Artificial
Neural Network model to IPO underpricing prediction.

Here, we use an Evolutionary Computation approach to perform transforma-
tions of the data set. These transformations make easier to adjust data to a
classic regression model and they also reduce the number of attributes of the
problem. Thus, the prediction task is improved and the dimensionality of the
problem is reduced.

4 Application to Financial Domains

In this work we have tested our method against two different problems: first,
we confronted the problem of bankruptcy prediction, second, we worked in IPO
Underpricing prediction domain. Also, in order to verify the correct operation of
our method and to make it more comprehensible, we have decided, as a previous
step, to apply it to a toy domain. In this domain, the direct solution is known
and the solution given by our method can be easily verified.
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4.1 Synthetic Domain

This domain is composed of two datasets: Ellipse and EllipseRT. Both are
two-class classification problems with 1000 two-dimensional points. In dataset
Ellipse, the examples belonging to class 0 are situated inside an ellipse centered
in the origin, whose focuses are placed at points (-10,0) and (10,0). Class 1 in-
stances are situated outside the ellipse. Dataset ElipseRT is similar, but the
ellipse has been rotated and translated, being its focuses located at points
(10, -10) and (1,7).

We ran our application on the data set Ellipse with the following parameters:
Maximum number of generations (G) = 500; population size (M) = 5000; func-
tion set = {+, -, *, /, SQR, SQRT}. The number of dimensions selected for the
projected space V is 2 in this case, due to considering them sufficient for a so
simple problem.

The graphical representation (not shown here) shows an almost perfect lin-
ear separability of projected data. A Simple Perceptron on the projected data
obtains 100% accuracy.

The same process was followed with dataset ElipseRT. Parameters for the
execution stay the same, but this time the dimension of the projected space is 3.
A Simple Perceptron applied to it obtains 99,9% accuracy, which means that
data has also been separated almost linearly. Figure 1 displays the projected
data. Points belonging to the inside of the elipse appear blacker and in the
bottom of the valley-like figure, whereas points belonging to the outside appear
grey, in the rest (upwards) of the figure.
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Fig. 1. Projected data for the rotated and translated elipse. Two classes: black circles
and grey squares.
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4.2 Bankruptcy Prediction Experiments

In this paper, we have applied the approach to a bankruptcy prediction problem.
We use a data set provided and described by [17]. This data set studies the
influence of several financial and economical variables on the financial health of
a company.

We have applied our method to a data set formed by 1158 companies, half of
which are in a bankruptcy situation (class 0) and the rest have a good financial
health (class 1). Companies are characterized by 40 numerical attributes as de-
scribed in [17]. For validation purposes, we have divided the data set into a train-
ing and a test set, containing 1048 (90%) and 118 (10%) instances respectively.

Our method will project the data from its original forty-dimension space to a
new three-dimensional one. GP was run 10 times. The population size (G) was
equal to 100 in all GP runs. Each experiment started from a different random
seed. Table 1 shows other parameters used in each GP run. The first column
shows the population size (M); Also, we introduced a limitation to the size of the
individuals in some GP runs. The second column of Table 1 shows the maximum
number of nodes allowed per individual. An experiment with a ”–” in this column
does not impose any limitation to the size of individuals. Classification accuracy
obtained by each GP-run is shown in Table 2.

It can be seen that in both experiment 5 and 9, our method achieves 85.59%
in test. In order to qualify our results, we ran a support vector machine (SMO)
and the Simple Logistics algorithm from the Weka tool [18], two methods that
perform very well on these data. Standard parameters were used. Results are
displayed in Table 3.

We can see that our method compares well to other well-performing methods.
In addition, it has to be remarked that the number of attributes of the problem
has been reduced from 40 to 3, while maintaining competitive results.

4.3 IPO Underpricing Prediction

For this problem we use a sample provided by David Quintana and that is
widely documented in [19]. The sample is composed by 1000 companies going

Table 1. Parameters used in each GP run

Exp. M max. nodes
1 1000 –
2 1000 –
3 500 –
4 500 –
5 500 150
6 500 150
7 500 100
8 500 100
9 500 75
10 500 75
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Table 2. Classification Results on the Bankrupctcy Prediction Data Set

Exp. Testing accuracy (%)
1 83.05
2 80.51
3 84.75
4 83.05
5 85.59
6 77.12
7 74.58
8 81.36
9 85.59
10 81.36

Table 3. Results obtained by Weka on the Bankrupctcy Prediction Data Set

Algorithm Testing Accuracy (%)
SMO 81.35
Simple Logistics 83.89
Best GP Individual 84.75

Table 4. Regression error results on the IPO Underpricing Prediction Data Set

Exp. NMSE Test
1 0.845798
2 0.861909
3 0.733960
4 0.858842
5 0.834267
6 0.857676

into the US Stock Market for the first time, between April 1996 and November
1999. Each company is characterized by seven explicative variables: underwriter
prestige, price range width, price adjustment, offer price, retained stock offer size
and relation to tech sector.

For validation purposes, we have divided the data set into a training and a
test set, containing 800 (80%) and 200 (20%) instances respectively. The quality
of the regression is measured by means of the Normalized Mean Square Error
(NMSE).

Our method will project the data from its original seven-dimensional space to
a new three-dimensional one. Six GP-runs (experiments 1 to 6) were carried out
using the data set as input. Each GP-run was feeded with a different random
seed. All the experiments used a population size of 1000 individuals. Regression
accuracy obtained by each GP-run is shown in Table 4. In experiment 3, it can
be seen that an individual with 0.73 NMSE was obtained.

Our method managed to obtain a 0.733960 NMSE in experiment 3. In [19], a
0.92302 NMSE has been reported as the best result achieved in their experiments
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using classic linear regression. If 20 outliers are removed from the data set, a
0.77238 NMSE is obtained.1 Thus, our method is able to obtain results that are
comparable with classic linear regression models, while reducing the number of
variables from seven to three.

5 Related Work

There are many different Constructive Induction algorithms that use a vast
number of different approaches. Here we only discuss works that use GP or any
other evolutionary strategy.

In [20], the authors use typed GP for building feature extractors. Functions
are arithmetic and relational operators. Terminals are the original (continuous)
attributes of the original data set. Every individual is an attribute and the
fitness function uses the info gain ratio. Testing results, using C4.5, show some
improvements in some UCI domains. Our approach differs in that our individuals
contain as many subtrees as new attributes to be constructed and that the fitness
function measures the degree of linear separation in the training data.

[21] follows a similar approach to ours, where every individual contains several
subtrees, one per feature. C4.5 is used to classify in feature-space. Their work
allows to crossover subtrees from different features, whereas we use homologous
crossover. Also, we demonstrate the approach in a regression problem.

In [22] authors discuss the importance of applying GA as a global search
strategy for CI methods and the advantages of using these strategies instead of
classic greedy methods. Also, they present MFE2/GA: a CI method that uses
GA to search through the space of different combination of attributes subsets
and functions defined over them. MFE2/GA uses a non-algebraic form of rep-
resentation to extract complex interactions between the original attributes of
the problem. There are obviously great differences between this work and our
approach, but it is still a very interesting application of evolutionary approaches
to the generation of CI methods.

In [23] authors present the GCI system. GCI is a CI method based in GP. It
is similar to our method in the facts that it uses basic arithmetic operators and
that the fitness is computed measuring the performance of a MLA (a quick-prop
net) using the generated attributes. However, each individual represents a new
attribute instead of a new attribute set. This way, GCI can only generate new
attributes that are added to the original ones, thus increasing the dimensional-
ity of the problem. The possibility of reducing the number of attributes of the
problem is only mentioned as a possible and very interesting future work.

In [24] Y. Hu Introduces another CI method based in Genetic Programming:
GPCI. As in GCI, in GPCI each individual represents a new generated attribute.
The fitness of a individual is evaluated by combining two different functions: an ab-
solute measure and a relative measure. The absolute measure evaluates the quality

1 Their paper also presents a rule-based method that obtains good results, but cannot
be directly compared to ours.
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of a new attribute using gain ratio. The relative measure evaluates the improve-
ment of the attribute over its parents. Function set is formed by two Boolean op-
erators: AND and NOT. GPCI is proved in twelve UCI domains and against two
other CI methods, achieving some competitive results. While the basic scheme of
GPCI is similar to our method, there are important differences including the func-
tion set, the representation of the attributes and the fitness function.

Finally, an important contribution of our work is the fact that we do not
restrict our method to classification problems. Instead, we have used our CI to
improve prediction rates in regression problems.

6 Conclusions

In this paper we have presented a Genetic Programming approach to project
data from an original highly dimensional input space to a target space with
fewer dimensions. The goal is to be able to approximate linear behavior in the
final space, so that classification or regression can be more easily achieved by
linear methods (linear separation or linear regression). We have applied our
method to two very relevant financial domains: Bankruptcy prediction and IPO
Underpricing Prediction. The first one is a classification problem which consists
on predicting whether a company is facing bankruptcy. The second one is a
regression problem since the goal is to predict the variations on the price of the
IPOs in the first day of trading. In both cases, we have obtained results that are
comparable to those of methods reported in the literature. In addition, we have
managed to drastically reduce dimensionality: from 40 to 3 in the first problem,
and from 7 to 3 in the second one.
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Abstract. This paper presents an evolutionary approach to solving
Sudoku puzzles. Sudoku is an interesting problem because it is a chal-
lenging logical puzzle that has previously only been solved by computers
using various brute force methods, but it is also an abstract form of a
timetabling problem, and is scalably difficult. A different take on the
problem, motivated by the desire to be able to generalise it, is presented.
The GAuGE system was applied to the problem, and the results obtained
show that its mapping process is well suited for this class of problems.

1 Introduction

The GAuGE system (Genetic Algorithms using Grammatical Evolution) [14]
is a genetic algorithm that uses a position independent representation of fixed-
length genotype strings which, through a mapping process, generate fixed-length
phenotype strings, which are neither under- nor over-specified. By position inde-
pendent it is meant that each phenotypic variable is encoded into the genotype
string along with an associated phenotypic position; that leads to a simultaneous
evolution of both the structure and the contents of the genotype strings.

This simultaneous evolution has the potential to learn linear relationships (or
dependencies) between variables; as the structure of genotype strings can adapt,
more important (or salient) variables can be grouped together, boosting the ex-
change capability of the crossover operator. Due to its specific mapping process,
GAuGE also allows phenotypic variables to exchange places, thus searching the
space of permutations of such variables in the phenotype strings. Although not
always a desirable effect, certain problem domains possess characteristics that
make this permutation search a welcome feature [14, 9].

The Sudoku puzzle seems to require that characteristic. The game is composed
of a n × n board, and the objective is to fill it with numbers, following a set of
simple constraints (see Section 3). Although there exist many algorithms that
solve these puzzles in a matter of seconds, in this work a different problem is
solved: a sequence of instructions is evolved and applied to the board, and a
fitness reward is given back. The objective is therefore to provide a sequence of
instructions that solves the puzzle, and that is human-readable; to that effect,
a number of logical instructions are available to the algorithm, which mimic the
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way a human solves this kind of puzzle. Moreover, Sudoku is analogous to many
scheduling and timetabling problems, and a system that can not only provide a
timetable, but also the logical steps used in deriving it can be a powerful tool.

The results obtained show that GAuGE is able to solve this problem, if a
sufficient function set is available. Also, a fair degree of temporal saliency clearly
helps the system to restructure individuals at the genotypic level, leading to the
discovery of better individuals as evolution progresses.

This paper is structured as follows: Section 2 presents the GAuGE system,
and Section 3 presents the Sudoku game. Section 4 presents the practical issues
of the experiments performed, and Section 5 analyses the results obtained.

2 GAuGE

The GAuGE system shares many of the biologically inspired features of Gram-
matical Evolution (GE) [13], the main ones being a genotype-to-phenotype map-
ping process, a functional dependency between genes, and the use of degeneracy.

In GE, a population of binary strings is evolved. When an evaluation is re-
quired, these are first converted into integer strings, and the integers are then
used to choose productions from a given grammar, creating a phenotype string.

In GAuGE, a similar process is employed. When a binary string is to be
evaluated, it is first converted into an integer string; these integers are then
interpreted as a sequence of (position, value) pairs, to create a phenotype string.

In GE, there is a functional dependency between each gene and all the genes
that precede it. This is because the grammar production chosen by a given gene
affects the context of the following genes; as a result, the set of productions
available for each gene is dependent on the context created by previous choices.

A similar effect is observed in GAuGE, regarding each position specification at
the genotypic level. The phenotypic position corresponding to that specification
affects the context of the following specifications, as the set of available positions
in the phenotype string changes; as a result, each specification is dependent on
the context created by previous specifications.

Finally, the use of degenerate code plays an important role in GE: by using
the mod operator to map an integer to a choice of productions from a grammar
rule, neutral mutations can take place, creating a many-to-one mapping between
the search and solution spaces, and introducing variety at the genotypic level.

In GAuGE, this feature is also present, as a direct result of the mapping
process employed. It has also been shown that the explicit introduction of de-
generacy can reduce structural bias at the genotypic level [10].

2.1 Background

Many systems have been developed using similar techniques to the ones em-
ployed in GAuGE. Bagley [1] used fixed-length strings of (position, value) spec-
ifications, and an inversion operator to move those specifications around in the
chromosome strings; both Frantz [3] and Holland [7] extended some of that work,
and similar operators were later designed, with the same purpose [12].
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The messy genetic algorithms [4, 5] are also based on the idea of a separate
encoding of the position and the value of each phenotypic variable. They dealt
with the problem of over-specification with a system of “first come, first served”
basis, whereas under-specification was dealt with the use of an evolved template.

More recently, Harik [6] applied the principles of functional dependency to
the Linkage Learning Genetic Algorithm, in which a chromosome is expressed
as a circular list of genes, with the functionality of a gene being dependent on a
chosen interpretation point, and the genes between that point and itself.

2.2 GAuGE Mapping

A formal description of the mapping process can be found elsewhere [10]; in
this work, a practical approach is presented. As an example, consider a simple
problem composed of four phenotypic variables (� = 4), ranging between the
values 0 and 7. The length of each individual depends on a chosen position field
size (pfs) and a value field size (vfs). As there are four variables, a value of
pfs = 2 has been chosen, as that is the minimum number of bits required to
encode four positions; for the value fields, a value of vfs = 4 has been chosen, to
introduce degeneracy (the minimum value required for vfs is 3). The required
length for each binary string is therefore L = (pfs+ vfs)× � = (2+4)× 4 = 24.

For example, take the following individual as an example genotype string:

001001101101110100010010

By using the pfs and vfs parameters, an integer string is created:

(0, 9), (2, 13), (3, 4), (1, 2)

These values are then interpreted as a sequence of (position, value) pairs: for each
one, the position is mapped to the number of positions available in the phenotype
string, and the value is mapped to the range of the phenotypic variables (8).
For the first pair, the position becomes (0 mod �) = (0 mod 4) = 0, as at this
stage no positions have been specified yet; the value becomes (9 mod 8) = 1.
The phenotype string can thus begin to be constructed, by placing value 1 into
position 0 (that is, the first available position in the phenotype string):

1,?,?,?

The second pair is decoded in the same way: the position becomes (2 mod 3) = 1
(as there are now only 3 positions available in the phenotype string), and the
value becomes (13 mod 8 = 5). The value 5 can then be placed into position 1
(the second currently available position in the phenotype string):

1,?,5,?

The third pair is processed in the same way: position = (3 mod 2) = 1, and
value = (4 mod 8) = 4, so value 4 is placed in the second available position:

1,?,5,4

Finally, after processing the last pair, the phenotype string becomes:

1,2,5,4
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Fig. 1. Example Sudoku boards. The referencing system used is shown on the left, an
example board in the middle, and its solution in the right.

3 Sudoku

The Sudoku game is a logic-based placement puzzle. It originated in the United
States in 1979, under the name Number Place; in 1984, it was slightly changed in
Japan, and quickly gained popularity. In November 2004, the British newspaper
“The Times” first published a Sudoku puzzle; since then, many newspapers
followed suit, and its popularity in the western world has increased immensely.

Traditionally, the puzzle consists of a 9×9 grid, made up of 3×3 blocks, for a
total of 81 cells (Fig. 1, left). The objective of the puzzle is to place the numbers
1 through 9 in each cell, such that the following rule set holds:

1. Each row must contain the numbers 1 through 9 only once;
2. Each column must contain the numbers 1 through 9 only once;
3. Each block must contain the numbers 1 through 9 only once.

Each puzzle comes with a set of numbers already placed (called givens). It
is considered well-formed if it has only one solution, and it can be solved using
logic (that is, no guessing is required to place any of the numbers). Fig. 1 shows
an example of a well-formed Sudoku puzzle, along with its (only) solution.

Although numbers have traditionally been used, any set of symbols can be
used in Sudoku (such as letters, shapes or colours). Also, although the 9× 9 size
grid is the most common, other variants exist, such as 16 × 16 and 25 × 25.

There are clear parallels between Sudoku and scheduling problems, such as
timetabling. Each row can be viewed as a time slot, each column a room and
each number a course. All courses must be scheduled in each room exactly once
per day, and no class can be scheduled in two different rooms at the same time.

3.1 Solving Sudoku with Computers

The problem of solving Sudoku puzzles on n2 × n2 boards of n × n blocks is
known to be NP-complete [20]; this gives an indication of why solving Sudoku
puzzles can be difficult. However, due to the finite size of the puzzle, it can be
solved by a deterministic finite automaton that knows the entire game tree [19].
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Fig. 2. Applying slice and dice to place number 9 in block 2. Starting with the left
board, slice finds a 9 in the third row, so 9 cannot be placed anywhere else in that
row (relevant cells are marked with an X in the second board). Dice finds a 9 in the
fifth column, so 9 cannot be placed anywhere else in that column (third board). This
results in only one cell being available to place 9 in block 2 (last board).

A different approach is to base each number-placing action purely on logic.
This technique is limited to well-formed puzzles, but has the advantage of pro-
ducing a list of logical actions, which can be easily reproduced by a human. Most
Sudoku software packages tend to use a mix of logic and brute force computation.

3.2 Logical Operations

There are many logical operations that can be used when solving Sudoku puzzles;
below are some of the most common (and simpler) techniques:

Last Remaining. This is a simple logic operation, that can be applied to any
kind of region (row, column or block). It simply checks if that region has already
eight numbers placed, in which case it places the remaining one.

Slice and Dice. This is a combination of two operations, slice and dice [17],
and can be applied when trying to place number n in block b. Slice looks for n in
each row passing through b; if it contains n, then the three cells intersecting with
b cannot contain n. Dice works with columns instead. If, after applying slice and
dice, only one cell is available, then it must contain n. Fig. 2 shows an example.

Column Fill. This technique tries to place number n in column c. It looks for
n in all rows and blocks passing through c; if a row or block contain n, then
the cell(s) corresponding to the intersection of that region and column c cannot
contain n. If after checking all rows and blocks there is only one cell available in
column c, then that cell must contain n. Fig. 3 shows an example.

Row Fill. This technique tries to place the number n in row r, and works in
the same way as Column Fill, but going through all the columns instead.

Raising Numbers. This technique tries to place the number n in block b, by
checking each empty cell in b to see if n is the only number that can be placed
in that cell; Fig. 4 shows an example.
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Fig. 3. Applying Column Fill to place number 9 in column 6. By searching through
all rows in the left board for the number 9, a set of cells can be marked as being
unsuitable to receive that number (second board); then looking through blocks 2, 5
and 8 (the blocks that intersect column 6) another unsuitable cell is discovered (third
board); finally, only one cell is available in column 6, so it must contain 9 (last board).
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Fig. 4. Applying Raising Numbers to place number 4 in block 4. By analysing the left
board, there are four empty cells in block 4, and the numbers 2, 4, 6 and 8 are missing.
Through Slice and Dice operations, the set of possible numbers for each of the empty
cells can be deduced: the leftmost empty cell can receive the numbers {2, 6}, the center
top cell can receive {4, 6, 8}, the rightmost one {2, 4, 6}, and the bottom center {4}.
Since this last cell can only receive the number 4, it is placed there (right board).

Sometimes different operations can be used to place the same number in the
same cell; other times only a specific one will do. Note also that often an opera-
tion can only be applied if a previous one has placed a specific number. In other
words, there are many logical sequences when using these logical operations.

3.3 Blind Sudoku

In this work, a variation of the original Sudoku puzzle is solved, which is termed
Blind Sudoku. All the same rules and constraints of the original puzzle still
apply; the difference lies on the way in which it is solved. A sequence of logic
instructions is applied to a puzzle, and a measure of goodness is returned to the
algorithm; in other words, the puzzle is never available to the algorithm, neither
is a measure of goodness for each individual logic instruction. Once a sequence
of instructions has been evaluated, the puzzle is reset to its original composition.
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This way of solving Sudoku puzzles is not dissimilar to the Santa Fe Ant Trail
problem [8], in which a sequence of instructions is given to an ant in a toroidal
grid world, and the number of food objects caught by the ant is returned as the
fitness measure.

Objective Function. As the number of cells in a 9×9 Sudoku board is always
81, that is used as the size of a sequence of instructions; this allows that sequence
to be applied to any puzzle, regardless of the number of givens. The fitness of a
sequence of instructions is simply the sum of the fitness of all its instructions;
the fitness of each single instruction is

fi =
{

k × (82 − i) if successful
coverage − 9 if unsuccessful

where k is a constant, and coverage is a measure of how many cells were ruled
out when unsuccessfully trying to place a number in a region (the X marks)1.
If the puzzle is completed before using up all the instructions, all remaining
instructions are considered neutral, and their fitness is fi = 0.

The fitness function heavily rewards successful instructions, and punishes un-
successful ones. A linear decreasing reward is also applied to each successful in-
struction: the earlier it is executed, the bigger the reward. This temporal saliency
is regulated by the k parameter; the higher its value, the higher the reward (in
these experiments, a value of k = 81 was used).

This problem has interesting characteristics, and can be compared to a class
of scheduling problems. There is a clear temporal dependency between each
phenotypic variable, as certain instructions can only be successful if a set of
numbers has been placed before their execution. The negative score applied to
unsuccessful instructions can be seen as an effort factor.

The GAuGE system seems adequate to solving this kind of problem. It al-
lows for successful instructions, which have already been discovered, to change
their phenotypic location (by mutating their position specification at the geno-
typic level), allowing them to be moved to the start of the phenotype string,
thus possibly maximising their contribution to the fitness of the set of
instructions.

4 Experiments

4.1 Practical Issues

In these experiments, GAuGE was used to evolve sequences of 81 instructions,
from the set {SliceDice, RowFill, ColFill, RaisingNumbers}. If an instruction is
successful, the LastRemaining instruction is tried on the corresponding region
(as it is a fast instruction), and if successful the remaining number is placed.
1 Note that the Raising Numbers technique does not mark any cells as unsuitable,

and thus if it is unsuccessful its fitness is always −9; this is judged to be fair, as it
is a slightly more expensive technique then all others.
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Also, the logic instructions are mapped onto the original board. For example,
if the algorithm tries to execute the instruction SliceDice(2,8) (place number 8 in
block 2 using SliceDice) on the board from Fig. 1, that instruction is translated to
SliceDice(2,9), as 8 already exists in block 2. This is only applied to the original
board: if a subsequent instruction is also SliceDice(2,8), then it is considered
unsuccessful, as number 9 has already been successfully placed in block 2.

The test set for these experiments consisted of puzzles taken from Carol Vor-
derman’s How to do Sudoku [17] (pp. 178–187). These were taken from the
“Difficult” section, and the first ten puzzles were picked (#111 to #120).

4.2 GAuGE Encoding

As there are 81 instructions in each sequence, the pfs parameter (size of position
fields) needs to be at least 7 (as 27 = 128). In these experiments, degeneracy is
used to soften the biases of the mod operator [10], so the value chosen is pfs = 8.

The vfs parameter is more complex. Each variable encodes three choices:

1. which instruction to use (out of 4 instructions);
2. which region to apply it to (out of 9 regions, be it blocks, rows or columns);
3. which number to attempt to place (out of 9 numbers).

To encode an instruction, 2 bits are sufficient. To encode a region and a
number, the minimum number of bits is 4 (24 = 16); as with the pfs param-
eter, degeneracy is used, and 5 bits are used for each of these encodings, so
vfs = 2 + 5 + 5 = 12. This means that the length of each GAuGE string is:

L = (pfs + vfs) × � = (8 + 12) × 81 = 1620 bits

4.3 Parameters

Table 1 shows the parameters used in these experiments. The mutation proba-
bilities are in a per-bit basis; the following rough formulae were used to set those
probabilities, to limit mutation events on each field to 1 per individual:

Pmut(pos) =
1

(8 × �)
=

1
648

≈ 0.0015 Pmut(val) =
1

(12 × �)
=

1
972

≈ 0.001

As a replacement strategy the Minimal Generation Gap model (MGG) [15]
was used; previous tests, both published [11] and not, suggest that it is appro-
priate for GAuGE, as it maintains diversity at the early stages of evolution, and
also keeps the population from stagnation at the later stages. It works as follows:

1. Two random parents are selected from the population;
2. The crossover operator is applied;
3. The two generated offspring are mutated and evaluated;
4. The best of the four individuals (both parents and offspring) is selected to

replace the first parent in the population;
5. A roulette wheel is used to select another individual from all four to replace

the second parent in the population.
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Table 1. Experimental setup

Replacement strategy: MGG
Crossover operator: 1-point
Problem length (�): 81

Population size (N): 100
Max. number of generations: 800

Position field size (pfs): 8 bits
Value field size (vfs): 12 bits
Crossover probability: 0.5

Position field mutation probability: 0.0015
Value field mutation probability: 0.001

Table 2. Results obtained for all puzzles. For each one, the average numbers placed
(over the total missing numbers) are shown, along with the average generation at which
those placements were achieved, and the number of successful runs (out of 30).

Puzzle #111 #112 #113 #114 #115 #116 #117 #118 #119 #120
Avg. placements 53/53 51/51 53/53 53/53 51/51 21/53 13/53 54/54 51/51 51/51
Avg. generation 238 181 166 210 123 55 14 301 188 135
Successful runs 30 30 30 30 30 0 0 30 30 30

5 Analysis

5.1 Results

Table 2 shows the results obtained in all puzzles; all runs for each puzzle (apart
from puzzles #116 and #117) were successful. The average number of gener-
ations required to complete a puzzle can be seen as a rough measure of its
difficulty: notice how for puzzle #118, which required 54 numbers to be placed,
a higher number of generations were required for all runs to be successful.

Puzzles #116 and #117 were never solved. Close analysis of these puzzles
showed that the function set available to the system was not sufficient to solve
them: a brute force search with the available logical functions was performed,
and a result could not be reached. Also, the maximum amount of numbers placed
for each puzzle with the brute force search method was 21 and 13 respectively,
which were the results obtained with GAuGE.

5.2 Sample Run and Solution

Figure 5 shows results from a sample run (puzzle #111, first run). It illustrates
a behaviour observed in all runs: as evolution progresses, the phenotypic strings
are rearranged, with successful instructions being placed at the start, due to fit-
ness pressure, and through GAuGE’s flexible genotypic representation. As these
instructions are forced towards the left side, more instructions are discovered in
the right side, which are then moved to the left as well.
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000001100000100000000000000100010000000000010001000000110000000010000000000000000
100011100000110000011100000000000100000011001000000001010000000000000000000000000
110111000001110001100000000110110000000100010000001010000000000000000000000000000
111011010101011000011001001011000000101000001000000000000000000000000000000000000
110011100011110011110001001110100000100000000001010000000000010000000000000000001
110110100111111111000110100100000100000000001100001000000000100001000000000000001
110111101101111100111110000000100000000000110000100001011000010000000000010010000
110011101111111111001100001110010010000101000010010000001100000000000001000001000
110111110111111101010101001100011000001010000100110000010000000000000010000010000
110111110110111111001100001110010100000101000110110010000100000000000010010010000
110111110111111101010101001100011000000111000110110010010100000101100000000000000
110111111111111101000101011000110000001110001111100001001000001001100000000000000
111111101111111101101101001001100010000101001100100101001000101010000000000000000
111111101111111101111101001100001000000100011111100100000100000011000000000000000
111111101111111101111101001000110001100000001111101000001100001000000000000000000
111111101111111101111101101000100001100000001111101000001100100000100000000000000
111111101111111101111111100100010000100100001011101000101001000000000000000000000
111111101111111101111111001001010000101000111000110001011000000000000000000000000
111111101111111101111111001001100010110000110001100010101000000000000000000000000
111111101111111111011111011001000010100001111001010000101000000000000000000000000
111111101111111101111111011001000010100011011001100100000000000000000000000000000
111111111111111001111111011001000010110001011001100100000000000000000000000000000
111111111111111111011111001001000010110001011001100100000000000000000000000000000
111111111111111111111101010010010001110100101100100000100000000000000000000000000
111111111111111111111101100110011001001100011001000010000000000000000000000000000
111111111111111111111101100110101011101000100001000010000000000000000000000000000
111111111111111111111101101110001111001001000100000100000000000000000000000000000
111111111111111111111101101111110010100001000100000100000000000000000000000000000
111111111111111111111101101111110010100001110000000000000000000000000000000000000
111111111111111111111101101111110010100011100000000000000000000000000000000000000
111111111111111111111101101111111010000011100000000000000000000000000000000000000
111111111111111111111111011101111010000011100000000000000000000000000000000000000
111111111111111111111111011111110100000011100000000000000000000000000000000000000
111111111111111111111111111011110100000011100000000000000000000000000000000000000
111111111111111111111111111101110100000011100000000000000000000000000000000000000
111111111111111111111111111111100100000011100000000000000000000000000000000000000
111111111111111111111111111110110100100011000000000000000000000000000000000000000
111111111111111111111111111111110010100001010000000000000000000000000000000000000
111111111111111111111111111111110010010011000000000000000000000000000000000000000
111111111111111111111111111111100011101000000000000000000000000000000000000000000

Fig. 5. Best individual found, every 20 generations (from sample run). Strings represent
sequences of instructions: a 0 signals an unsuccessful instruction, and a 1 a successful
one. As evolution progresses, successful instructions are moved towards the start, due to
GAuGE’s disassociation between position and value specifications, and fitness pressure.
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Fig. 6. Results for puzzle #111, averaged across 30 runs. The graph on the left shows
the mean maximum and average number of successful instructions, and the graph on
the right the mean best and average fitness scores. Notice how around generation 350
all numbers have already been placed on all runs, but yet the fitness score continues
to raise, due to the nature of the fitness score used in the experiments.

Clearly, the scaled fitness measure used in these experiments, which highly
rewards individuals with successful instructions at the start of their instruc-
tion sequence, is the major reason for the restructuring of individuals. However,
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Fig. 7. Puzzle #111 and a sample solution found for it

this would not be possible without a disassociation between position and value
specifications at the genotypic level, which the GAuGE representation
allows for.

Notice also how, after discovering a solution, evolution continues. This is
again due to the way the fitness function rewards earlier successful instruc-
tions. This can also be seen in Figure 6, which shows graphs averaged across
30 runs for puzzle #111: at generation 361, all runs have been successful, but
best and average fitness continue to grow until the maximum number of
generations.

Figure 7 shows a sample solution for puzzle #111.

6 Conclusion

This paper presented an evolutionary approach to solving Sudoku puzzles. The
problem introduced, “Blind Sudoku”, is an interesting challenge to the field, and
the variety of Sudoku puzzles available (there are 6,670,903,752,021,072,936,960
different Sudoku grids [2]) allow for a high degree of difficulty ranges.

The characteristics of the problem make it easily translated to real-world
problems, such as timetabling, where variables exhibit a degree of temporal
saliency, and potential dependency. It has the added bonus that the solution is
not known in advance (and not required for the evaluation of solutions), so each
evolved solution is potentially unique.

The GAuGE system, when supplied with suitable logical instructions, is able
to solve the problem, and does so by producing a list of the logical steps taken.
This could be invaluable when tackling real world scheduling problems, as the
list of steps provides an audit trail, so the solutions produced are provably
correct.

Future work will consider increasing the number of operators made available
to the system, to make it possible to solve more difficult puzzles, although this
will increase the search space. We will also examine real world scheduling prob-
lems with this system, which, particularly in the case of timetabling problems,
can be viewed as special cases of Sudoku.
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The Halting Probability in
Von Neumann Architectures

W.B. Langdon and R. Poli

Department of Computer Science, University of Essex, UK

Abstract. Theoretical models of Turing complete linear genetic pro-
gramming (GP) programs suggest the fraction of halting programs is
vanishingly small. Convergence results proved for an idealised machine,
are tested on a small T7 computer with (finite) memory, conditional
branches and jumps. Simulations confirm Turing complete fitness land-
scapes of this type hold at most a vanishingly small fraction of usable
solutions.

1 Introduction

Recent work on strengthening the theoretical underpinnings of genetic program-
ming (GP) has considered how GP searches its fitness landscape [1, 2, 3, 4, 5, 6].
Results gained on the space of all possible programs are applicable to both GP
and other search based automatic programming techniques. We have proved con-
vergence results for the two most important forms of GP, i.e. trees (without side
effects) and linear GP [1, 7, 8, 9, 10]. As remarked more than ten years ago [11], it
is still true that few researchers allow their GP’s to include iteration or recursion.
Indeed there are only about 50 papers (out of 4631) where loops or recursion have
been included in GP. Without some form of looping and memory there are algo-
rithms which cannot be represented and so GP stands no chance of evolving them.

We extend our results to Turing complete linear GP machine code programs.
We analyse the formation of the first loop in the programs and whether programs
ever leave that loop. Mathematical analysis is followed up by simulations on a
demonstration computer. In particular we study how the frequency of different
types of loops varies with program size. In the process we have executed programs
of up to 16 777 215 instructions. These are perhaps the largest programs ever
(deliberately) executed as part of a GP experiment. (beating the previous largest
of 1 000 000 [12]). Results confirm theory and show that, the fraction of programs
that produce usable results, i.e. that halt, is vanishingly small, confirming the
popular view that machine code programming is hard.

The next two sections describe the T7 computer and simulations run on it,
whilst Sections 4 and 5 present theoretical models and compare them with mea-
surement of halting and non-halting programs. The implications of these results
are discussed in Section 6 before we conclude (Section 7).

P. Collet et al. (Eds.): EuroGP 2006, LNCS 3905, pp. 225–237, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Table 1. T7 Turing Complete Instruction Set

Instruction #operands operation v set
ADD 3 A + B→C v
BVS 1 #addr→pc if v=1
COPY 2 A→B
LDi 2 @A→B
STi 2 A→@B
COPY PC 1 pc→A
JUMP 1 addr→pc

Every ADD operation either sets or
clears the overflow bit v.
LDi and STi, treat one of their argu-
ments as the address of the data. They
allow array manipulation without the
need for self modifying code. (LDi and
STi data addresses are 8 bits.)
To ensure JUMP addresses are legal,
they are reduced modulo the program
length.

2 T7 an Example Turing Complete Computer

To test our theoretical results we need a simple Turing complete system. Our
seven instruction CPU (see Table 1) is based on the Kowalczy F-4 minimal
instruction set computer http://www.dakeng.com/misc.html, cf. appendix of
[13]. T7 consists of: directly accessed bit addressable memory (there are no spe-
cial registers), a single arithmetic operator (ADD), an unconditional JUMP, a
conditional Branch if oVerflow flag is Set (BVS) jump and four copy instructions.
COPY PC allows a programmer to save the current program address for use as
the return address in subroutine calls, whilst the direct and indirect addressing
modes allow access to stacks and arrays.

Eight bit data words are used. The number of bits in address words is just
big enough to be able to address every instruction in the program. E.g., if the
program is 300 instructions, then BVS, JUMP and COPY PC instructions use
9 bits. These experiments use 12 bytes (96 bits) of memory (plus the overflow
flag).

3 Experimental Method

There are simply too many programs to test all of them. Instead we gather
representative statistics about those of a particular length by randomly sampling
programs of that length. Then we sample those of another length and so on, until
we can build up a picture of the whole search space.

To be more specific, one thousand programs of each of various lengths
(30. . . 16 777 215 instructions) are each run from a random starting point, with
random inputs, until either they reach their last instruction and stop, an infinite
loop is detected or an individual instruction has been executed more than 100
times. (In practise we can detect almost all infinite loops by keeping track of
the machine’s contents, i.e. memory and overflow bit. We can be sure the loop
is infinite, if the contents is identical to what it was when the instruction was
last executed.) The programs’ execution paths are then analysed. Statistics are
gathered on the number of instructions executed, normal program terminations,
type of loops, length of loops, start of first loop, etc.
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4 Terminating Programs

The introduction of Turing completeness into GP raises the halting problem, in
particular how to assign fitness to a program which may loop indefinitely [14].
We shall give a lower bound on the number of programs which, given arbitrary
input, stop, and show how this varies with their size.

The T7 instruction set has been designed to have as little bias as possible.
In particular, given a random starting point a random sequence of ADD and
copy instructions will create another random pattern in memory. The contents
of the memory is essentially uniformly random. I.e. the overflow v bit is equally
likely to be set as to be clear, and each address in memory is equally likely.
(Where programs are not exactly a fraction of a power of two long, JUMP
and COPY PC addresses cannot completely fill the number of bits allocated
to them. This introduces a slight bias in favour of lower addresses.) So, until
correlations are introduced by re-executing the same instructions, we can treat
JUMP instructions as being to random locations in the program. Similarly we
can treat half BVS as jumping to a random address. The other half do nothing.
We will start by analysing the simplest case of a loop formed by random jumps.
First we present an accurate Markov chain model, then Section 4.2 gives a less
precise but more intuitive mathematical model. Section 4.3 considers the run
time of terminating programs.

4.1 Markov Chain Model of Non-looping Programs

The Markov chain model predicts how many programs will not loop and so
halt. This means it, and the following segments model, do not take into account

1/75/7
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Fig. 1. Probability tree used to create Markov model of the execution of random Turing
complete programs. HALT indicates a terminating program, while SINK means the
start of a loop.
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those programs which are able to escape loops and do reach the end of the
program and stop. As a program runs, the model keeps track of: the number of
new instructions it executes, if it has repeated any, and if it has stopped. The
last two states are attractors from which the Markov process cannot escape.
State i means the program has run i instructions without repeating any. The
next instruction will take the program from state i either to state i + 1, to
SINK or to HALT. In our model the probabilities of each of these transitions
depends only on i and the program length L, see Figure 1. We construct a
(L + 2) × (L + 2) Markov transition matrix T containing the probabilities in
Figure 1. The probabilities of reaching the end of the program (HALT) or the
looping (SINK) are given by two entries in T L. Figure 2 shows our Markov
chain describes the fraction of programs which never repeat any instructions
very well.

4.2 Segment Model of Non-looping Programs

As before, we assume half BVS instructions cause a jump. So the chance of pro-
gram flow not being disrupted is 11/14. Thus the average length of uninterrupted
random sequential instructions is

∑L/2
i=1 i (11/14)i−1 3/14. We can reasonably
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replace the upper limit on the summation by infinity to give the geometric dis-
tribution (mean of 14/3 = 4.67 and standard deviation

√
142/32 × 11/3 = 8.94).

For simplicity we will assume the program’s L instructions are divided into
L/4.67 segments. Two thirds end with a JUMP and the remainder with an active
BVS (i.e. with the overflow bits set). The idea behind this simplification is that
if we jump to any of the instructions in a segment, the normal sequencing of
(i.e. non-branching) instructions will carry us to its end, thus guaranteeing the
last instruction will be executed. The chance of jumping to a segment that has
already been executed is the ratio of already executed segments to the total.
(This ignores the possibility that the last instruction is a jump. We compensate
for this later.)

Let i be the number of instructions run so far divided by 4.67 and N = L/4.67.
At the end of each segment, there are three possible outcomes: either we jump
to the end of the program (probability 1/N) and so stop its execution; we jump
to a segment that has already been run (probability i/N) so forming a loop; or
we branch elsewhere. The chance the program repeats an instruction at the end
of the ith segment is

=
i

N
(1 − 2

N
)(1 − 3

N
) . . . (1 − i

N
)

I.e. it is the chance of jumping back to code that has already been executed
(i/N) times the probability we have not already looped or exited the program
at each of the previous steps. Similarly the chance the program stops at the end
of the ith segment is

1
N

(1 − 2
N

)(1 − 3
N

) . . . (1 − i

N
) =

1
N i

(N − 2)!
(N − i − 1)!

=
(N − 2)!
NN−1

NN−1−i

(N − i − 1)!

= (N − 2)!N1−NeNPsn(N − i − 1, N)

Where Psn(k, λ) = e−λλk/k! is the Poisson distribution with mean λ.
The chance the program stops at all (ignoring both the possibility of leaving

the first loop and of other loops for the time being) is simply the sum of all the
ways it could stop

N−1∑
i=1

(N − 2)!N1−NeNPsn(N − i − 1, N) = (N − 2)!N1−NeN
N−2∑
j=0

Psn(j, N)

For large mean (N � 1)
∑N−2

j=0 Psn(j, N) approaches 1/2 (see Figure 3). There-
fore the chance of long programs not looping is (using Gosper’s approximation
n! ≈

√
(2n + 1/3)π nne−n and that for large x (1 − 1/x)x ≈ e−1):

≈ 1/2(N − 2)!N1−NeN ≈ 1/2
√

2π/N

(
1 +

37
12N

)

That is (ignoring both the possibility of leaving the first loop and of other loops
for the time being) the probability of a long random T7 program of length L
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stopping is about 1/2
√

2π14/3L
(
1 + 37×14

36L

)
=

√
7π/3L (1+259/18L). As men-

tioned above, we have to consider explicitly the 3/14 of programs where the last
instruction is itself an active jump. Including this correction gives the chance of a
long program not repeating any instructions as ≈ 11/14

√
7π/3L (1+259/18L).

Figure 2 shows this
√

length scaling fits the data reasonably well.

4.3 Average Number of Instructions Run Before Stopping

The average number of instructions run before stopping can easily be computed
from the Markov chain. This gives an excellent fit with the data (Figure 4).
However, to get a scaling law, we again apply our segments model.

The mean number of segments evaluated by programs that do halt is:
N−1
i=1 i/N i

j=2(1−j/N)
N−1
i=1 1/N i

j=2(1−j/N)
.Consider the top term for the time being

= 1/N

N−1∑
i=1

i exp

⎛
⎝ i∑

j=2

log(1 − j/N)

⎞
⎠ < 1/N

N−1∑
i=1

i exp

⎛
⎝ i∑

j=2

−j/N

⎞
⎠

= 1/N

N−1∑
i=1

i exp
(

− i(i + 1) − 2
2N

)
< 1/Ne

1
N e−

1
2N

N−1∑
i=1

i exp
(

− i2

2N

)

≈ e
1

2N 1/N

∫ N−1/2

1/2
xe−x2/2Ndx = e

1
2N

[
e−x2/2N

]1/2

N−1/2
≈ e

3
8N

Dividing e
3

8N by the lower part (the probability of a long program
not looping) gives an upper bound on the expected number of segments
executed by a program which does not enter a loop ≈ e3/8N

1/2
√

2π/N(1+ 37
12N )

≈ (1 + 3
8N )(1 − 37

12N )
√

2N/π ≈ (1− 65
24N )

√
2N/π. Replacing the number of seg-

ments N (N = 3L/14) by the the number of instructions L gives, to first order,
14/3 ×

√
2 × (3L/14)/π =

√
28L/3π = 1.72

√
L. Figure 4 shows, particularly
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short programs. However as random programs run for longer, COPY PC and JUMP
derandomise the 96 bit memory, so easing looping.

for large random programs, this gives a good bound for the T7 segments model.
However, as Figure 2 confirms, the segments model itself is an over estimate.

Neither the segments model, nor the Markov model, take into account de-
randomisation of memory as more instructions are run. This is particularly acute
since we have a small memory. JUMP and COPY PC instructions introduce cor-
relations between the contents of memory and the path of the program counter.
These make it easier for loops to form.

5 Loops

5.1 Code Fragments Which Form Loops

If a BVS or an unconditional JUMP instruction jumps to an instruction that
has been previously obeyed, a loop is formed. Unless something is different the
second time the instruction is reached (e.g. the setting of the overflow flag) the
program will obey exactly the same instruction sequence as before, including
calculating the same answers, and so return to start of the loop again. Again,
if nothing important has changed, the same sequence of instructions will be run
again and an infinite loop will be performed. Automated analysis can, in most
cases, detect if changes are important and so the course of program execution
might change, so enabling the program to leave the loop.
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We distinguish loops using the instruction which formed the loop. I.e. the last
BVS or JUMP. There are two common ways JUMP can lead to a loop: either
the program goes to an address which was previously saved by a LOAD PC
instruction or it jumps to an address which it has already jumped to before.
E.g. because the two JUMP instructions take their target instruction from the
same memory register. A loop can be formed even when one JUMP address
is slightly different from the other. Therefore we subdivide the two types of
JUMP loops into three sub-classes: those where we know the address register
has not been modified, those where the least significant three bits might have
been changed, and the rest. See Figure 5.
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Fig. 5. Types of first loop in T7 random programs. In large programs most loops have
a last branch instruction which is either COPY PC (+) or JUMP (∗) with unsullied
target addresses. In a further 20–30% of programs, the lower three bits of the target
address may have been modified (plotted as solid and dashed lines). Since BVS (×)
jumps to any address in the program, it is less likely to be responsible for loops as
the program gets larger. Mostly, the fraction of unclassified loops (�) also falls with
increasing program size.

5.2 Number of Instructions Before the First Loop

Since we are stopping on the first loop there is competition between the different
types of loop and only the fastest to form are observed. So the observed mean
number of instructions before a loop is formed is pretty much independent of loop
type (cf. Figure 5). With bigger programs, BVS loops get longer and so might be
expected to appear later in a program’s execution. This apparent contradiction
is resolved by noting BVS loops become a smaller fraction of first loops.
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5.3 COPY PC and JUMP Loops

As Figure 5 shows, almost all long programs get trapped in either a COPY PC
or a JUMP loop. We can approximately model the lengths of both types of
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loops. In both cases very short loops are predicted. We would expect, since
there is less chance to disrupt memory, tight loops to be more difficult to
escape.

Let M = #bits = 96, A = size of program address, D = data size = 8.
Assume the chance of a loop containing i instructions = chance appropriate
JUMP × (chance loop not already formed and memory not disturbed)i−1. It
is very difficult to calculate the probability of another loop forming before the
one of interest. Instead we will just model the random disruption of the address
stored in memory by a COPY PC instruction. There are seven instructions,
four of which write D bits and COPY PC which writes A bits. The effect of a
random update not changing overwritten data, is as if the target was shrunk to
≈ A − 2 bits. Thus the chance of a random instruction modifying the address is
(4(A+D − 3)+2A− 3))/7M . Therefore the chance of a COPY PC-JUMP loop
being exactly i instructions long is ≈ 1

7M (1 − (6A + 4D − 15)/7M)i−1. This is a
geometric distribution, with mean 7M/(6A+4D−15). For the longest programs
A = 24, suggesting the mean length will be 161/672=4.17. In fact, we measure
4.74 ± 0.16, cf. Figure 9. The mean length for JUMP-JUMP loops will be one
less (lower curve in Figure 9). The simple model is quite good but does not
fully capture the competition between different loops. Note the vast majority of
programs in the whole search space (which is dominated by long programs) fall
into loops with fewer than 20 instructions.
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6 Discussion

Of course the undecidability of the Halting problem has long been known. More
recently work by Chaitin [15] started to consider a probabilistic information
theoretic approach. However this is based on self-delimiting Turing machines
(particularly the “Chaitin machines”) and has lead to a non-zero value for Ω
[16] and postmodern metamathematics. Our approach is firmly based on the
von Neumann architecture, which for practical purposes is Turing complete.
Indeed the T7 computer is similar to the linear GP area of existing Turing
complete GP research.

While the numerical values we have calculated are specific to the T7, the
scaling laws are general. These results are also very general in the sense that
they apply to the space of all possible programs and so are applicable to both
GP and any other search based automatic programming techniques.

Section 4 has accurately modelled the formation of the first loops in program
execution. Section 5 shows in long programs most loops are quite short but
we have not yet been able to quantitatively model the programs which enter a
loop and then leave it. However we can argue recursively that once the program
has left a loop it is back almost where it started. That is, it has executed only
a tiny fraction of the whole program, and the remainder is still random with
respect to its current state. Now there may be something in the memory which
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makes it to easier to exit loops, or harder to form them in the first place. For
example, the overflow flag not being set. However, it may also contain previous
values of the program counter (PC), which would tend to make it easier to
form a new loop. Also initial studies indicate the memory and flag will become
nearly random almost immediately. That is having left one loop, we expect the
chance of entering another to be much the same as when the program started,
i.e. almost one. Thus the program will stumble from one loop to another until it
gets trapped by a loop it cannot escape. As explained in Section 5, we expect,
in long programs, it will not take long to find a short loop from which it is
impossible to escape.

Real computer systems lose information (converting into heat) [9]. We expect
this to lead to further convergence properties in programming languages with
recursion and memory.

7 Conclusions

Our models and simulations of a Turing complete linear GP system based on
practical von Neumann computer architectures, show that the proportion of halt-
ing programs falls towards zero with increasing program length. However there
are exponentially more long programs than short ones. In absolute terms the
number of halting programs increases (cf. Figure 8) but, in probabilistic terms,
the Halting problem is decidable: von Neumann programs do not terminate with
probability one.

In detail: the proportion of halting programs is ≈ 1/
√

length, while the av-
erage and standard deviation of the run time of terminating programs grows as√

length. This suggests a limit on run time of, say, 20 times
√

length instruction
cycles, will differentiate between almost all halting and non-halting T7 programs.
E.g. for a real GHz machine, if a random program has been running for a single
millisecond that is enough to be confident that it will never stop.
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Abstract. To analyse various properties of the search process of genetic pro-
gramming it is useful to quantify the distance between two individuals. Using
operator-based distance measures can make this analysis more accurate and re-
liable than using distance measures which have no relationship with the genetic
operators. This paper extends a recent definition of a distance measure based on
subtree crossover for genetic programming. Empirical studies are presented that
show the suitability of this measure to dynamically calculate the fitness distance
correlation coefficient during the evolution, to construct a fitness sharing system
for genetic programming and to measure genotypic diversity in the population.
These experiments confirm the accuracy of the new measure and its consistency
with the subtree crossover genetic operator.

1 Introduction

Tree-based genetic programming (GP) uses transformation operators on tree structures
[1] to carry out search. These operators define a neighbourhood structure over the
trees. To analyse various dynamics of the GP search process, it is useful to quantify
the distance between two trees in this topological space. For example, the distance
between trees is useful if we want to monitor population diversity (see for instance
[2, 3, 4, 5, 6, 7]) or if we want to calculate well-known measures of problem hardness
such as fitness distance correlation (FDC) (see among others [8, 9, 10, 11]). Operator-
based distance measures can make calculating distance and the analysis of the search
process more accurate [10, 11, 2, 3, 4, 5]. The difficulty in defining operator-based dis-
tance measures was highlighted in [12]. Defining a distance measure, or a measure of
similarity, that is, in some sense “bound” to (or “consistent” with) the genetic oper-
ators informally means that if two trees are close to each other, or similar, one can
be transformed into the other in a few applications of the operator(s). Mutation-based
distance measures for GP have been defined, the most common being some variations
on the Levenshtein edit distance [3] and the structural distance [7]. In [12], Gustafson
and Vanneschi first defined the notion of a subtree crossover based pseudo-distance
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measure. In this paper, we extend and generalise that definition and we experimentally
show the usefulness of this new distance measure to analyse some properties of the
search process.

2 Subtree Crossover Distance

Following the same notation as in [12], let P be a population of trees, T1 be the tree we
want to compute a distance from (or the parent tree), T2 be the tree which we would
like to transform T1 into, and let “T1/T2” be the “difference” of these two trees. By
definition, this difference operator produces a pair of subtrees (sT1 ,sT2), where subtree
sT2 ∈ T2 must replace sT1 ∈ T1 to make T1 = T2. Supposing that T1 ∈ P, the subtree
crossover distance (SCD from now on) between T1 and T2 depends on the ability to
select sT2 from some tree in P. Thus, the SCD1 between T1 and T2 also depends on
the population P. One possibility to define the SCD is to consider it as being equal
to 1 in case sT2 ∈ P, since it is possible to transform T1 into T2 in just one crossover
application. On the other hand, if sT2 /∈ P then it will require more than one applica-
tion of subtree crossover to make T1 = T2. In that case, calculating the distance would
mean counting all these possible applications. This definition of the SCD clearly has
some problems: we would need to consider all the necessary next populations or, at
least, to approximate them. Creating all the necessary future populations for a partic-
ular application of the SCD is clearly computationally infeasible. We might create the
future expected populations using calculations similar to the ones found in the schema
theorems for GP [13]. However, finding the future expected populations is also costly,
essentially requiring a similar amount of computation as actually running the GP al-
gorithm. Furthermore, we have assumed that the distance between T1 and T2 is equal
to 1 if one crossover application to T1 can build T2. However, when we actually exe-
cute our algorithm, it is not certain that this particular application will occur. Therefore
it may be useful to know the likelihood of creating a particular tree T2 in the next
generation. To overcome the difficulty of defining a multiple operator distance, and to
incorporate the stochastic properties of the algorithm, Gustafson and Vanneschi [12]
introduced the possibility of considering operator-distance in terms of the probability
of correctly applying the operator once. That is, if one tree is in the neighbourhood
of another, how likely is it that this neighbour will be found. Since we know (or we
can easily calculate) the values of parameters like the selection probability of trees
and the frequency of all subtrees in the current population, we could assign a prob-
ability to the selection of all subtrees in the next population. If we know what sub-
tree is required to make two trees equal, then we may approximate distance in terms

1 The subtree crossover distance that we consider in this paper is a probability and thus it is
clearly not a metric. Furthermore it is not just a function of two trees, but also of the population
they belong to and in general it does not respect the properties of metrics (like for instance the
triangle inequality). Thus, the term “pseudo-distance” (in the sense that it indicates how “far
apart” the two items are) would be more appropriate than the term distance. In some senses,
we could say that our measure is more like a similarity/dissimilarity measure than a proper
distance (Euclidean) metric: it conveys information about how likely it is to make two trees
equal, which does largely depend on their similarity. Nevertheless, we use the term distance
for the sake of brevity.
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of the probability of selecting this subtree. Thus, given the subtree crossover operator
V , Gustafson and Vanneschi defined the distance function by the following pseudo-
code:

func distance(T1,T2,V,P){
(sT1 ,sT2 ) = T1/T2

ps1 = probSelecting(sT1 ,T1)
ps2 = probCreating(sT2 ,P)
return (1 − ps1 ∗ ps2)

}

Given the subtree sT2 that needs to replace sT1 ∈ T1, the distance is defined in terms of
the probability of selecting sT1 in T1 and the probability of creating (or selecting) sT2

from P. Both functions, probSelecting() and probCreating(), require knowledge of the
selection probabilities used in the algorithm. Finding sT1 and sT2 and determining the
probability of selecting sT1 ∈ T1 can be done in linear time in the size of T1 and T2.
The probSelecting() function can be defined for subtree crossover based on the node
selection probability. Given uniform node selection, selecting the subtree sT1 ∈ T1 has
the probability of 1

|T1| . The probCreating() function for subtree crossover can be defined
to consider all the occurrences of the subtree sT2 in the population and their probability
of selection. That is, for a tree that contains sT2 , we may want to know how likely that
tree will be selected by a selection method. We will then want to know the probability
of selecting sT2 . Since evolutionary algorithms use fitness-based selection to implement
solution competition, not all trees have the same likelihood of being selected. Gustafson
and Vanneschi [12] used this fact to provide an effective way of reducing complexity
of this operator distance while preserving the utility of the measure: they only consid-
ered those trees and their subtrees that are likely to be selected. However, the distance
used in [12] presents one major limitation: in that definition, in case a tree T2 cannot
be obtained from a tree T1 with one crossover, the distance between T1 and T2 was the
probability of selecting the root of T1 as crossover point and a subtree equal to T2 from
the population. The likelihood of this event was considered to be very small and thus
it was approximated to zero (and thus the distance was set to one, i.e. the maximum
possible distance). In other words, the distance between two trees T1 and T2 was equal
to one if T1 and T2 differed in more than one subtree. In some cases, this approximation
may be too coarse, thus compromising the accuracy of the measure (for instance when
using the SCD for calculating the FDC). In this paper, we extend that definition admit-
ting that the distance between two trees T1 and T2 differing in more than one subtree
can have a smaller value than one and thus overcoming this limitation. The new sub-
tree crossover distance can be defined as follows: we define a new operator diff(T1,
T2) which returns the set S = {(s1

T1
,s1

T2
),(s2

T1
,s2

T2
), ...,(sn

T1
,sn

T2
)} such that ∀i ∈ [1,n]

if we replace si
T1

with si
T2

in T2 we obtain T1; diff(T1, T2) returns the empty set if T1

and T2 share no genetic material. Now, the new SCD can be defined by the following
algorithm:
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func SCD(T1,T2,P ){
S = diff (T1,T2)
res = 0
for i = 1 to cardinality(S) do

ps1 = probSelecting(si
T1

,T1)
ps2 = probCreating(si

T2
,P)

res = res+(ps1 ∗ ps2)
endfor
return(1 − res)

}

The main difference between this new definition and the one in [12] is that the returned
value is a sum of probabilities, each of which is the product between the probability of
selecting one subtree si

T1
and the probability of creating one subtree si

T2
. The paper [12]

contains a detailed discussion on the computational complexity of the old definition of
crossover distance. The complexity of this new definition is not much higher than the
complexity of the old one: the most expensive step is storing in a hash table all the
subtrees in the population at each generation (and it was done also in the old version).
Once it has been done, the cost of building the S set differs from the cost of generating
only two subtrees sT1 and sT2 (eventually selecting the root of T1 and sT2 = T2, as in the
old definition) of a linear factor. This new distance measure will be used in the next
section for analysing some properties of the GP search process.

3 Experimental Results

The goal of this section is to show the suitability of the new definition of SCD for
monitoring various properties of the GP search process. In particular, Section 3.1 shows
how this distance can be used to calculate fitness distance correlation (FDC) inside the
population during the search process, Section 3.2 shows results of fitness sharing using
SCD and Section 3.3 shows how the SCD can be used to measure genotypic diversity
of populations.

3.1 Fitness Distance Correlation

FDC was first proposed as a difficulty measure for GAs in [8]. It is defined as fol-
lows: given a sample F = { f1, f2, ..., fn} of n individual fitnesses and a corresponding
sample D = {d1,d2, ...,dn} of the n distances to the nearest global optimum, FDC =
CFD/(σF σD), where: CFD = 1

n ∑n
i=1( fi − f )(di − d) is the covariance of F and D and

σF , σD, f and d are the standard deviations and means of F and D. In [8], Jones pro-
posed that GAs problems may be partitioned into three classes, depending on the value
of the FDC coefficient: misleading (if the FDC is positive, and thus fitness increases
as the distance to the global optimum increases), straightforward (if FDC is negative,
and thus fitness increases as individuals approach the global optimum) and difficult (if
the there is no correlation between fitness and distance). In [9, 10, 11], Vanneschi et al.
showed the suitability of FDC as a measure of problem hardness for tree based GP. In
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particular, they used systems with single-node altering transformation operators (like
single-node mutation) and they employed the well known structural distance [7] (which
they proved to be bound to this operator) to accurately calculate the FDC. They also
showed that FDC calculated using structural distance is a reasonable indicator of prob-
lem hardness for GP systems using subtree crossover. Nevertheless, given that no bound
was proven between subtree crossover and structural distance, they used large samples
of individuals (and not just the individuals composing the population) to calculate FDC.
On the other hand, the study of the trend of the FDC in the population during the evo-
lution would be very interesting, since this study would be more dynamic than studying
the FDC once for all on a single large sample of individuals. In fact, this investigation
would allow us to study how the FDC gets modified during the evolution and this in-
formation could allow us to draw some conclusions on the dynamics of the GP search
process. In particular, we could imagine that if the FDC value decreases during the
evolution and it tends towards −1, the population is converging towards the global opti-
mum (individuals are approaching the global optimum as fitness is improving). On the
other hand, if the FDC value increases during the evolution, or it remains static at some
initial positive level or at zero, this probably means that the population is converging
towards a local optimum (fitness is improving, but the distance to the global optimum is
not decreasing). The following experiments have been done to confirm this hypothesis
and to test the suitability of SCD to calculate the FDC.

Syntactic Trees
In the syntactic trees problem, as used in [12], trees are represented using the set of
functions F = {N}, where N is a binary operator (N stands for “Non-terminal”) and
the set of terminal symbols T = {L} (L stands for “Leaf”). No “content” is associated
with the nodes and fitness is simply equal to the edit distance (ED from now on) to a
fixed global optimum. The global optimum of an instance is generated using a random
tree growing algorithm described in [12]. The definition of ED used here is the same as
in [3]. Figure 1(a) shows the tree chosen as optimum for the experiments in Figure 2,
and Figure 1(b) shows the tree chosen as optimum for the experiments in Figure 3.

These experiments have been performed using the following set of parameters: gen-
erational GP, population size of 30 individuals, standard subtree crossover as the only
genetic operator, tournament selection of size 5, ramped half-and-half initialisation,

(a) (b)

Fig. 1. (a) The tree used as optimum for the experiments in Figure 2. (b) The tree used as optimum
for the experiments in Figure 3.
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Fig. 2. Syntactic Trees Problem. Average values (a) and average values with their standard devi-
ations (b) of average fitness, best fitness and FDC in the population against generations over 50
independent GP runs. In all these runs the optimum has been found before generation 100. The
tree used as optimum in these experiments was the tree in Figure 1(a).
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Fig. 3. Syntactic Trees Problem. Average values (a) and average values with their standard devi-
ations (b) of average fitness, best fitness and FDC in the population against generations over 50
independent GP runs. In all these runs the optimum has not been found before generation 100.
The tree used as optimum in these experiments was the tree in Figure 1(b).

maximum depth of individuals for the initialisation phase equal to 4, maximum depth
of individuals for crossover equal to 8. All the runs have been stopped at genera-
tion 100. Figure 2 reports the average values (with their standard deviations in Figure
2(b)) of the best fitness, the average fitness and the FDC (calculated using SCD) in
the population (against generations) over 50 independent GP runs in which the global
optimum has been found before generation 100 (successful runs). Producing 50 suc-
cessful runs has been easy, probably for the very simple shape of the tree that we have
used as optimum (shown in Figure 1(a)). The method that we have used to collect
50 successful runs was simply to execute a sequence of GP runs until 50 successful
ones were found. It has been sufficient to execute 52 runs to get 50 successful ones.
Figure 3 reports the same information, but this time for 50 unsuccessful runs. Col-
lecting 50 unsuccessful runs has been easy, probably for the particular shape of the
tree that has been used as optimum, shown in Figure 1(b) (over 61 runs, 50 were
successful). These figures show that, in case of success, the FDC decreases until the
global optimum is found and than remains negative until the end of the run. In case
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of unsuccessful runs, the FDC value always stays around zero, independently from the
fact that fitness is slightly improving. Our interpretation is that, in this last case the evo-
lutionary process in “leading” the population towards a local optimum, which probably
has a rather large crossover distance from the global one. For successful runs the fact
that FDC is negative indicates that evolution is “leading” the population towards the
global optimum.

Trap Functions
We now define a problem where trees are represented using the same syntax as in [14],
i.e. by means of the set of functions F = {B,C} (where B is a binary operator and C
has arity = 3) and the set of terminal symbols T = {X}. The fitness of each tree is
a function of its structural distance (as defined in [7]) to a fixed global optimum and
it is not defined here for lack of space (see for instance [11] for a formal definition).
In this paper, it is sufficient to remember that the fitness definition for trap functions
depends on two parameters (called b and r), which can be used to tune the difficulty
of the problem (see [11] for a detailed discussion). Figure 4(a) shows the tree chosen
as optimum for the experiments in Figure 5 and Figure 4(b) shows the tree chosen
as optimum for the experiments in Figure 6. Parameters used in these experiments
are as follows: generational GP, population size of 100 individuals, standard subtree
crossover used as the sole genetic operator, tournament selection of size 10, ramped

(a) (b)

Fig. 4. (a) The tree used as optimum for the experiments in Figure 5. (b) The tree used as optimum
for the experiments in Figure 6.
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Fig. 5. Trap Functions. Average values (a) and average values with their standard deviations (b)
of average fitness, best fitness and FDC in the population against generations over 50 independent
GP runs. In all these runs the optimum has been found before generation 100. The tree used as
optimum in these experiments was the tree in Figure 4(a).
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Fig. 6. Trap Functions. Average values (a) and average values with their standard deviations (b)
of average fitness, best fitness and FDC in the population against generations over 50 independent
GP runs. In all these runs the optimum has not been found before generation 100. The tree used
as optimum in these experiments was the tree in Figure 4(b).

half-and-half initialisation, maximum depth of individuals for the initialisation phase
equal to 6, maximum depth of individuals for crossover equal to 10. Here, we have
used larger trees than in the case of the syntactic tree problem discussed in the previous
section (arity 3 nodes and deeper trees have been considered). The reason is that we
wanted to test our hypotheses in different conditions. Figure 5 reports the average values
(with their standard deviations in Figure 5(b)) of the best fitness, the average fitness
and the FDC (calculated using SCD) in the population (against generations) over 50
independent successful GP runs. The method used to collect 50 successful runs was the
same as the one discussed in the previous section. In these experiments, we have set
the b and r trap functions parameters as follows: b = 0.9 and r = 0.1. In this way, the
fitness landscape is easy to search for GP [11] and thus it is easy to have successful runs.
Figure 6 reports the same information as Figure 5, but for 50 independent unsuccessful
GP runs. In this case, the b parameter was set to 0.1 and the r parameter to 0.9 in order to
make the fitness landscape difficult to search for GP [11]. The method used to collect 50
unsuccessful runs was the same as the one discussed in the previous section. In Figure
3(b), the scale on the ordinates axis has been restricted in order to enlarge the graph and
to make it clearer and more readable. These figures show that for successful runs the
FDC decreases until the global optimum is found and than remains negative until the
end of the run, while in case of failure the FDC is always positive. Here the phenomenon
is even more marked than in the case of syntactic trees. In fact, for successful runs
FDC rapidly stabilises to approximately -0.6, while for unsuccessful runs FDC always
remains approximately equal to 0.8. Once again, our conclusion is that the value of
FDC in the population (calculated using the SCD) is a good indicator of the “direction”
the search process is “leading” the population: negative values of the FDC mean that
the search is moving towards a global optimum, while positive values of the FDC mean
that the search is moving towards local ones.

3.2 Fitness Sharing

In the previous section, we have shown that SCD can appropriately be used to dynami-
cally calculate the population FDC during the evolution. However, as discussed in [11],
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FDC is not a predictive measure (i.e. the global optima must be known to be able to
calculate it), which makes the FDC almost unusable in practice. Other than a measure
for diversity, can the SCD be useful for practitioners? In this section, we discuss fitness
sharing, calculated using the SCD. Fitness sharing is a mechanism, first introduced
by Goldberg and coworkers [15] for GAs, for counteracting premature convergence of
populations. With this scheme, the fitness function is modified to incorporate a sharing
function s, defined to determine the degree of sharing of each individual in the popula-
tion. When fitness sharing is used, the fitness of each individual i in the population P is
calculated as fs(i) = f (i)/∑ j∈P∧ j �=i s(d(i, j)), where f is the problem fitness function
and d is a distance measure between genotypes. In this section, we compare the perfor-
mance of two different fitness sharing systems using the SCD and the ED as distance d
with standard GP systems. For the s function, we have simply used s(x) = 1 − x, after
normalizing ED values into the set [0,1] (there is no need of normalising SCD values,
since they are probabilities, and thus they are already included into [0,1]). Experiments
have been done on a problem which is the same as the syntactic tree problem described
in Section 3.1, except for the fitness of an individual i is equal to the sum of the differ-
ences of the number of nodes of i and the ones of a fixed global optimum for each level
in the trees. This is the same fitness used in [12]. In this way, the global optimum is
not unique, which is a case in which using fitness sharing may be appropriate [15]. GP
parameters are the same as the ones used for syntactic trees in Section 3.1. Results are
shown in Figure 7, where two experiments, with two different global optima, are consid-
ered. These two optima were two different randomly generated trees (whose structure
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Fig. 7. Average best fitness values against generations (Figures (a) and (c)) and average best
fitness values with their standard deviations (Figures (b) and (d)) over 50 independent GP runs
using standard GP (gray curves) and fitness sharing (black curves). Figures (a) and (b) differ from
Figures (c) and (d) for the particular tree chosen as optimum.
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Fig. 8. Average values (a) and average values with their standard deviations (b) of population’s
diversity against generations over 50 independent runs. In all these runs the optimum has been
found before generation 100.

is not shown here for lack of space). Curves in Figure 7(a) and 7(c) show the average
values of the best fitness in the population against generations over 50 independent GP
runs for the two cases where the two different randomly generated trees have been used
as optima. Figures 7(b) and 7(d) show standard deviations of the curves in Figures 7(a)
and 7(c) respectively. As these figures show, the fitness sharing system using the SCD
finds, on average, better quality solutions than standard GP and than fitness sharing sys-
tems using the ED for both the cases studied, even though standard deviations bars may
slightly overlap in some cases2. We hypothesise that the better results achieved by the
SCD occur because SCD is bound to the genetic operator used by GP and thus more
accurate than ED in directing the evolutionary search process.

3.3 Diversity

In this section, we compare results of population genotypic diversity calculated by the
SCD with the ones obtained using the ED. In both cases, diversity has been measured as
the standard deviation of the distance of the individuals in the population to a fixed opti-
mal tree. The problem and GP parameters used in this section are the same as the syntax
trees problem described in Section 3.1, with the only difference that the tree chosen as
optimum has been randomly generated at the beginning of each GP run (and thus it
changes from one run to the other). Figure 8 shows average values (with their standard
deviations, which are reported in Figure 8(b)) of diversity against generations over 50
independent successful GP runs The method used to collect 50 successful runs was the
one presented in section 3.1. Figure 9 reports analogous results for 50 independent runs
in which the optimum has not been found before generation 100. Also the method used
to collect 50 unsuccessful runs was the one presented in section 3.1. First of all, we re-
mark that the behavior of SCD diversity is rather different from the one of ED diversity:
ED diversity is, in general, very “unstable”, in particular at the beginning of the runs.
On the other hand, SCD diversity has much smaller variations during the evolution.

2 In particular, the bars of the fitness sharing system using the ED and the ones of the standard
GP system always overlap. On the other hand, the bars of the fitness sharing system using SCD
and the ones of the other two systems only slightly overlap in some cases.
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Fig. 9. Average values (a) and average values with their standard deviations (b) of population’s
diversity against generations over 50 independent runs. In all these runs the optimum has been
found before generation 100.

Furthermore, while ED diversity curves are always decreasing and tend towards zero,
the SCD diversity tends to stabilise on a certain value and to constantly maintain this
value until the end of the runs. Finally, we observe that in the unsuccessful runs, SCD
diversity tends to stabilise towards zero. This happens because in those cases, after a
certain number of generations, all the individuals in the population tend to have a SCD
to the optimum equal to zero: it becomes more and more difficult to find trees that can
be transformed into the global optimum by simply swapping some of its subtrees with
some other in the population. On the other hand, in the successful runs, SCD diversity
values remain approximately equal to a value that, although not very large, is always
larger than zero. In those cases, producing the optimum by means of crossover from
trees in the population is possible.

4 Conclusions

This paper has two main goals: extending the definition of subtree crossover distance
(SCD) given in [12] and empirically showing that this new measure is useful to investi-
gate some properties of the GP search process. Results that have been presented show
that (1) the SCD is appropriate to study the trend of fitness distance correlation (FDC)
of populations during the evolution; (2) the SCD is also appropriate for fitness sharing,
producing better results than standard GP and than fitness sharing systems using edit
distance (ED); (3) if we use the SCD standard deviation to quantify population diver-
sity, we obtain different results and we capture different properties than if we use ED
standard deviation. We hypothesise that the reason for these results is that the SCD ap-
propriately models subtree crossover. Future work includes exploring other definitions
of operator-based measures and the tradeoffs involved with reducing their complexity.
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2. S. Gustafson, A. Ekárt, E.K. Burke, and G. Kendall. Problem difficulty and code growth in
genetic programming. Genetic Programming and Evolvable Hardware, 5(3):271–290, 2004.



Using Subtree Crossover Distance to Investigate Genetic Programming Dynamics 249

3. S. Gustafson. An Analysis of Diversity in Genetic Programming. PhD thesis, School of Com-
puter Science and Information Technology, University of Nottingham, Nottingham, England,
February 2004.

4. E.K. Burke, S. Gustafson, and G. Kendall. Diversity in genetic programming: An analysis
of measures and correlation with fitness. IEEE Transactions on Evolutionary Computation,
8(1):47–62, 2004.

5. N.F. McPhee and N.J. Hopper. Analysis of genetic diversity through population history.
In W. Banzhaf et al., editors, Proceedings of the Genetic and Evolutionary Computation
Conference, pages 1112–1120, FL, USA, 1999. Morgan Kaufmann.

6. M. Tomassini, L. Vanneschi, F. Fernández, and G. Galeano. A study of diversity in multipop-
ulation genetic programming. In 6th International Conference on Evolutionary Computation
EA’03, pages 69–81, 2003.
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Abstract. In many evolutionary algorithms candidate solutions run the
risk of getting stuck in local optima after a few generations of optimiza-
tion. In this paper two improved approaches to measure population di-
versity are proposed and validated using two traditional test problems
in genetic programming literature. Code growth gave rise to improve
pseudo-isomorph measures by eliminating non-functional code using an
expression simplifier. Also, Rosca’s entropy to measure behavioral di-
versity is updated to cope with problems producing a more continuous
fitness value. Results show a relevant improvement with regard to the
original diversity measures.

1 Introduction

In many evolutionary algorithms candidate solutions run the risk of getting stuck
in local optima after a few generations of optimization. As evolution progresses,
more and more individuals grow towards those high-scoring (deceptive) solutions,
eliminating possibly useful genetic material. The population isn’t able to escape
from the local optima and hence converges. This paper elaborates on the issue of
measuring diversity in the context of tree-based genetic programming (GP).

In GP there are two major types of diversity. We can either look for struc-
tural diversity (differences in the tree structure) or diversity based on behavior
(fitness). The simplest way to obtain the former measure in a standard genetic
programming population, is by counting the number of structurally unique indi-
viduals, programs or trees (variety). The GP tree structure could also be checked
for graph isomorphism. However, verifying if both trees are isomorph is very
time consuming and the computational effort needed increases dramatically as
the trees grow bigger (due to the properties of some tree nodes: associativity,
etc.). Rather than trying to find out if two trees are identical twins or isomorphs,
determine if there is a possibility that they are isomorph. This is done by calcu-
lating a set of simple characteristics such as tree depth, the number of terminals
and the number of functions. If these properties match, both individuals are
called pseudo-isomorph. Burke et al. [1] mention that pseudo-isomorphs are as
informative as the number of structurally unique individuals (variety). This is
an extra reason to choose for the latter, more simpler measure.

P. Collet et al. (Eds.): EuroGP 2006, LNCS 3905, pp. 250–259, 2006.
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Besides basing diversity measures solely on the parse tree itself or some de-
rived characteristics of this tree, it is also useful to have some measures based
on its behavior. The easiest way of measuring such diversity, is by counting the
number of distinct fitness values. This measure gives an idea of how scattered
the individuals are inside the solution space. Also, the distribution of the fit-
ness values (depicted in histograms) can return useful information [2]. In [3]
the entropy, denoting the amount of disorder in the population, was introduced.
First fitness values are divided into several partitions. Then entropy is calcu-
lated as −

∑
k pk. log pk with pk the proportion of the population occupied by

partition k. Rosca observed that plateaus or monotonic decreases in entropy over
an increased number of generations were associated to plateaus in best fitness
plots. Moreover, entropy decreases indicated loss of population diversity. More
advanced structural and behavioral diversity measures exist. A detailed explana-
tion is beyond the scope of this paper but an excellent overview and comparison
are given in [4].

An important problem with GP genomes is that, while evolution proceeds,
programs contain more and more non-functional code (called code growth [5]).
Many diversity measures don’t take non-functional code into account when cal-
culating structural diversity of the population. Also, in many real-life problems
there exists an almost infinite amount of possible fitness values (see quartic
regression, section 2). When putting each fitness value in a different partition
(= standard definition of entropy), the entropy remains high while often (some)
behavioral convergence is seen. To overcome both difficulties two improved di-
versity measures are presented in this paper. A structural method based on the
functional size of an individual ’s parse tree and a behavioral method that is an
extension of Rosca’s entropy [3]. The rest of the paper is organized as follows.
In the following section the two test cases used in this study and the GP soft-
ware are briefly explained. A detailed explanation of both improved diversity
measures is given in section 3 while results are presented in section 4. Finally
section 5 summarizes the experimental findings and draws some conclusions.

2 Problem Set-Up

This section will describe two test cases that were used to test and validate the
effect of both enhanced diversity measures. Also, a description of the GP system
used in this study is given here.

2.1 Quartic Regression

The regression problem is to evolve a function g(x) that matches sample points
taken from a function f(x). The target function chosen is f(x) = x4+x3+x2+x;
x ranging from -1 to +1. Candidate solutions are tested against 20 uniformly
distributed points ranging over the same interval. Fitness Freg is defined as
follows:

Freg =
1

1 +
∑n

i=1 |Ai − Pi|
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with Pi the predicted value, Ai the actual (real) output and n the number of
fitness cases (=20). The function set has 5 members which are: ×, ÷ (returns 1
when dividing by 0), −, +, log(|number|) (log 0 = 1). The terminal set has two
members: the input value x, and a random constant in the range [−1, 1] whose
value, once generated, is fixed during the rest of the evolutionary run.

2.2 The Artificial Ant

The artificial ant can be viewed as a miniature robot that has to follow a trail
of food pellets distributed over some grid. Here the Santa-Fe trail is chosen with
89 food pellets spread over a grid of 32 by 32 positions [6]. The robot generates
a path by walking through this map. It is allowed to run for 500 time-steps
after which fitness is measured by the number of food pellets “run over” or
consumed. Each terminal costs one time-step to evaluate; each function on the
other hand takes no time. The function set has three members. The first is IF-
FOOD-AHEAD, which has two arguments — one to be performed if there is
food in front of the ant, the other otherwise. The remaining two functions are
PROGN2 and PROGN3, each taking 2 and 3 arguments respectively. Each of
these functions simply executes its children from left to right. The terminal set
has three members: MOVE, which moves the ant one step forward. LEFT, which
turns the ant left, and RIGHT, turning the ant right. Fitness is given by the
number of food pellets eaten divided by the total amount of food on the trail.

2.3 GP Engine

The same standard GP system was used for both test problems. The GP is
generational and is run for 50 generations. The ramped half-and-half technique
is used to generate the initial population containing 500 individuals. The initially
generated programs are evenly distributed (ramped) between depths of 2 and 4.
As in [1] only crossover is used (no mutation). No additional depth/node limit is
placed on the programs. The GP system continues running even when an optimal
solution (100% correct) has been discovered. All results are averaged over 100
independent runs (each time with a different random seed). The GP software is
a modified version of the Lil-gp package developed by Punch and Zongker [7].

3 Enhanced Diversity Measures

As mentioned in the introduction, pseudo-isomorphs are fast to calculate because
they require a set of simple tree characteristics. Entropy on the other hand
appears to be a promising alternative combining the expressive power of fitness
histograms and unique fitness values. In this section, both measures are enhanced
to give a more accurate view on population diversity.

3.1 Structural Measures: The Code Growth Issue

An important problem with variable length tree structures is that they tend
to grow without a corresponding increase in fitness. While evolution proceeds,
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programs contain more and more non-functional code [5]. In that way they oc-
cupy a lot of memory, reduce speed and make the programs harder to read by
humans.

Many diversity measures don’t take non-functional code into account when
calculating structural diversity of the population. In this paper an enhanced ap-
proach is proposed eliminating non-functional code when calculating structural
diversity. The algorithm comprises two important steps: (A) simplification of the
program tree and (B) calculating pseudo-isomorphism based on the simplified
tree. To help implementing the first step, an expression simplifier is used to get
rid off all redundant (non-functional) code, keeping only the functional part. The
simplifier uses a set of reduction rules, tailored to the problem at hand. Some
examples:

– for the regression problem:
• if one of the operands of a multiplication, addition or substraction is a

constant valued zero (or one), the tree is replaced by the result. Example:
X × 0 = 0, X × 1 = X , X + 0 = X and X − 0 = X and vice versa.

• if both operands of +, −, ×, ÷ are constants, the tree is replaced by the
result. The same applies to log.

• if both operands of a substraction (division) are equal, the result will
be zero (one) and the subtree is replaced with a constant. Some special
properties (associativity, commutativity, etc.) are not taken into account
due to computational complexity.

– for the artificial ant:
• if the first child (or the second) of the function IF-FOOD-AHEAD is

also an IF-FOOD-AHEAD node then only the first subtree (or second)
will be executed and hence, the tree can be reduced.

• The successive execution of LEFT and RIGHT with no other func-
tions/terminals executed in between has no relevant effect. Therefore,
redundant pairs like (LEFT, RIGHT) and (RIGHT, LEFT) statements
are removed from the parse tree.

Depending on the problem (see section 4) there are many more terminals and
functions in traditional trees while there are less in simplified ones. After pruning
the tree structure, the 3-tuple <program depth, terminal nodes, function nodes>
is calculated (which we will call functional pseudo-isomorphs). If the number of
terminals, functions and the depth are smaller in pruned trees then there are
fewer combinations, which lead to distinct 3-tuples. Therefore, it is expected
that the number of functional pseudo-isomorphs is smaller than the number of
pseudo-isomorphs.

3.2 Phenotypical Measures: The Entropy

In many real-life problems there exists an almost infinite amount of possible
fitness values. The regression problem as described in the previous section is a
good example of this. Here, fitness values are floating point numbers, scaled be-
tween 0.0 and 1.0. Inherently, two individuals with exactly the same fitness value
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hardly ever occur and so, the entropy will generally remain high because fitness
values that are very close to each other, are put in different partitions. For exam-
ple: if the population contains 500 individuals and all fitness values are different
then the entropy will be −

∑
k=1..500 pk. log pk = −500 × 1

500 × log( 1
500 ) ≈ 2.70.

Specifically for the symbolic regression problem, the calculation of Rosca’s
entropy is changed. Instead of assigning a unique partition to each fitness value
(as is usually done), the range of possible fitness values is divided in a number of
equally sized intervals. Different settings have been tried: #intervals= 10, 20, 40,
60, 100 and 200. In the artificial ant problem, the maximum number of different
fitness values is given by 90 since there are only 89 food pellets and fitness is
zero if no food is collected. Therefore in that problem there is no explicit need
to use a different entropy measure and the original definition [3] applies.

4 Results and Discussion

Figure 1b shows mean and best fitness for both test cases. As can be noticed, fit-
ness rapidly increases during the first few generations. The population is evolving
from an initially random (bad fitness) situation to a more optimized form. Af-
ter a few generations, however, best fitness improvement slows down and hardly
changes. From this point onwards, it seems that further optimizing (i.e. evolving)
the population has almost no effect on best fitness and is a waste of computational
effort1. This critical point was around generation 15 for the quartic regression
problem and slightly sooner for the artificial ant (generation 11). In this section
we investigate if the usage of both original and enhanced diversity measures,
could provide more information on why this slowdown occurs.

4.1 Functional Pseudo-isomorphs

Figure 2 shows results of original and functional pseudo-isomorphic diversity
measures on the symbolic regression and artificial ant problem. On both graphs
(left and right) it is shown that the number of unique pseudo-isomorphic
3-tuples is small in the beginning of the evolutionary run. Because the initial
population is generated using small depths (depth ramp between two and four),
individuals will have a limited program size (=small number of terminals and
functions) and inherently fewer pseudo-isomorphic combinations, which lead to
distinct 3-tuples, exist. However, from the initial population onwards — due to
the unrestricted search space — individuals will start to grow (compare with Fig.
1a). Although pseudo-isomorphs are based on more general characteristics of pro-
gram trees instead of exact resemblance, this will lead to an increased number of
distinct pseudo-isomorphic 3-tuples (original definition of pseudo-isomorphs). In
both test cases, the number of unique pseudo-isomorphic 3-tuples increases until
the maximum (= population size) is reached, indicating that continuously struc-
turally new individuals are created. In what follows, it is shown that functional
pseudo-isomorphs will give a more accurate description of the population’s state.
1 Please note that mean fitness in the regression problem is still improving, even at

generation 50.
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Fig. 1. On the left: mean (functional) program size for both test cases. On the right:
mean and best fitness for the artificial ant and the regression problem.

Figure 1, the artificial ant problem, shows a large gap between original and
functional program size. The obtained reduction is huge, indicating that the
ant problem is very vulnerable to introns. When eliminating large portions of
non-functional code (using the expression simplifier), it is expected that a lot
of individuals —although possibly structurally different— will fall in the same
class of functional pseudo-isomorphs thereby reducing the number of distinct
3-tuples. This effect will be more obvious when the overhead becomes bigger.
This is confirmed in Fig. 2 (right). At first the number of distinct functional
pseudo-isomorphic 3-tuples increases rapidly, reaching a maximum at generation
four, and decreases from that point onward. Crossover will produce tree struc-
tures resembling the fitter-than-average ones. There are various ways to create
such program trees. For example, nested IF-FOOD-AHEAD statements are an
ideal hangout for code which can be easily removed by the expression simpli-
fier (see section 3). This will result in fewer unique functional pseudo-isomorphs
(decreased diversity), a slowdown in best fitness and an increase in mean fitness
(as can be seen in fig. 1b). With regard to the ant problem, functional pseudo-
isomorphs indicate structural convergence towards a (sub)optimal solution.

It is remarkable that when comparing these findings with the original pseudo-
isomorphs, the latter continues to (slowly) increase. According to this result,
structurally different solutions continue to be generated by crossover while from
previous discussion it is clear that the opposite is true.

The regression problem shows a different situation (Fig. 2, left). Both the
original and functional pseudo-isomorphic measures rise quickly in the beginning
and slow down around generation 20. From that point onwards, the
original pseudo-isomorphs continue to increase (but very slowly) while the func-
tional pseudo-isomorphs slowly decrease. The gap in absolute value between both
curves is probably due to the difference between program size and functional
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Fig. 2. Traditional and enhanced pseudo-isomorphs applied to the quartic regression
problem (left) and the artificial ant (right)

program size as shown in Figure 1. This difference in program size is much smaller
compared to the artificial ant problem. In contrast with the ant problem, there
is no steep descent after generation 20. Using commutativity, associativity and
by the nature of the problem definition there exist many (structurally) different
trees approximating the target function. In combination with the inclusion of
various extraneous functions (only x, + and × are necessary to build the target
function) the already unrestricted search space is further enlarged. We assume
that the large offer of fit but structurally different solutions provides an explana-
tion of why populations in the quartic regression problem don’t (or very slowly)
seem to converge structurally. This is also confirmed in [8] where the authors
state that relatively easy problems have a lot of structurally different solutions
resulting in high structural diversity.

4.2 Standard and Enhanced Entropy

In problems with a discrete and limited set of possible fitness values such as
the ant problem, program fitness in the initial population is expected to be low
(situated around 0) with few unique fitness values. After a few rounds of opti-
mization and combining better than average subtrees, fitness values are spread
over a larger range of possible values (so probability of having more unique
values increases). Near the end of an evolutionary run —when optimal solu-
tions arise more often— individuals tend to gather around these optima, again
leading to a decrease in unique fitness values. This is seen in Fig. 3 (left): an
increase during the first few generations followed by a decrease. Entropy pro-
duces similar results because it is strongly related to the number of unique fitness
values (= number of partitions). Besides it gives an idea of how fitness is dis-
tributed. Entropy reaches its maximum a few generations before the number
of unique fitness values does. When entropy decreases (suppose the number of
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Fig. 3. Rosca’s entropy (dashed line) and the number of unique fitness values (solid
line) for the artificial ant problem (left) and the quartic regression (right)

partitions is fixed), fitness values are less uniformly spread over the different
intervals.

Problems, having a more continuous output generally show the same behav-
ior (although during the first few generations there is a decrease immediately
followed by a sharp increase), but the number of unique fitness values is usually
much larger (Fig. 3 right). Also, changes in entropy are more subtle compared to
the artificial ant problem (smaller scale). Since fitness is a floating point number
between 0 and 1, an almost infinite amount of possible fitness values exists (ini-
tially almost 500 different fitness values exist, a count equal to the population
size) and as a consequence the standard entropy will remain high. Especially
the inclusion of an constant in the terminal set adds to an increased number of
phenotypically different solutions. After all, constants are floating point num-
bers between -1 and 1 (continuous), and the smallest difference between two
constants could generate a different fitness value.

To overcome these problems (initial fluctuation and subtle changes) fitness
was split up into a number of equally-sized partitions. Example: when using 10
intervals, fitness was divided into 10 groups with fitness values ranging from 0 to
0.1, from 0.1 to 0.2 and so on. Figure 4 shows results of the entropy using inter-
vals. In general, the lower the number of intervals, the lower the entropy since it
resembles the amount of disorder in the population. Less intervals (categories)
means more order and less chaos. By transforming the continuous fitness space
into a discrete one, similarly shaped curves as in the artificial ant problem are
generated. Initially the number of non-empty intervals will be very low since the
individuals’ fitness is very low. Looking at Fig. 1b (mean fitness regression) we
don’t expect to find a lot of fitness values above 0.3 (and if so, center of distribu-
tion will be situated around low fitness). Inherently also the entropy will be very
low (in an extreme case the entropy is zero when all fitness values settle in the
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Fig. 4. Entropy with intervals in the regression problem

same interval, for example when using 10 intervals). After the initial generation
the fitness values are dispersed over a larger number of intervals. This trend con-
tinues until the maximum entropy is reached. From then on, the population will
optimize towards higher fitness values and the entropy starts to decrease again
(opposite effect). To conclude, in the regression problem behavioral convergence
is seen (although slower compared to the ant).

5 Conclusion

Premature convergence together with the loss of diversity is a problem with
many evolutionary optimization methods. Candidate solutions get stuck in local
optima and often no further improvement in fitness is noticed. In this paper two
new approaches to accurately measure diversity are proposed. Code growth gave
rise to improve pseudo-isomorph measures by eliminating non-functional code
using an expression simplifier. Results show that this newly founded measure
more accurately indicates the amount of genotypical diversity in the artificial ant
problem. Also the standard entropy to measure phenotypic diversity is updated
to cope with problems producing a more continuous fitness value such as the
regression problem. Fitness is first clustered into a limited number of intervals.
Afterwards the entropy is calculated. Results show a relevant improvement with
regard to the original entropy.

Recently, the authors developed a local optimization operator based on sub-
tree fitness to control code growth in genetic programming [9]. As with many
multi-objective methods [10], the GP search suffers from premature convergence
when using this growth reducing operator. The authors assume that this is due
to a fixed setting of the probability with which the operator is applied. Using
both diversity measures explained in this paper the authors first hope to con-
firm this hypothesis. Second, the authors wish to use these diversity measures
in an adaptive controller scheme, making the probability setting dependent on
the amount of growth and the diversity in the population (as in [11]).
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Abstract. Genetic Programming (GP) [1] often uses a tree form of a
graph to represent solutions. An extension to this representation, Auto-
matically Defined Functions (ADFs) [1] is to allow the ability to express
modules. In [2] we proved that the complexity of a function is indepen-
dent of the primitive set (function set and terminal set) if the represen-
tation has the ability to express modules. This is essentially due to the
fact that if a representation can express modules, then it can effectively
define its own primitives at a constant cost.

Cartesian Genetic Programming (CGP) [3] is a relative new type of
representation used in Evolutionary Computation (EC), and differs from
the tree based representation in that outputs from previous computations
can be reused. This is achieved by representing programs as directed
acyclic graphs (DAGs), rather than as trees. Thus computations from
subtrees can be reused to reduce the complexity of a function. We prove
an analogous result to that in [2]; the complexity of a function using a
(Cartesian Program) CP representation is independent of the terminal
set (up to an additive constant), provided the different terminal sets can
both be simulated. This is essentially due to the fact that if a represen-
tation can express Automatic Reused Outputs [3], then it can effectively
define its own terminals at a constant cost.

1 Introduction

GP is a test-and-generate paradigm where a representation is chosen to express
programs, and programs are generated and tested against a set of test cases.
A broad variety of representations have been used in GP, e.g. lists, trees and
graphs. Research in EC involves choices about the fitness function, representa-
tion and genetic operators, however in this paper we are only concerned with
representation. Typically, GP is supplied with a function set and a terminal set
and new functions are created by stringing together these primitives so the out-
put of one is fed into another. The choice of representation determines how new
functions can be created from the primitive set. In standard tree style GP, each
time a new ‘sub-function’ is needed it must be represented again as a new sub-
tree. ADFs, on the other hand, can arbitrarily define new functions which can
be reused as and when needed. CGP, which we now introduce, lies somewhere
between these two types of representation in terms of the type of reuse allowed.

In CGP, a Cartesian Program (CP) representation is evolved. In a CP a set
of function nodes are placed on a 2D grid arranged in rows and columns (see
figure 1). The inputs to the CP are fed in from the left and the outputs are

P. Collet et al. (Eds.): EuroGP 2006, LNCS 3905, pp. 260–269, 2006.
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taken from the right. There can be one output or many. Information flows from
left to right through the representation. Each function node can take its input
from the output of any of the function nodes to the left of it. The functions at
each location in the grid and the connectivity of the function nodes (i.e. which
function node is connected to which other function node) are evolved. It maybe
that some function nodes are not connected at some point during the evolution.
For example, the function nodes in the final column could be directly connected
to the inputs and so no intermediate computation takes place. While the overall
structure has fixed size (effectively the number of rows times the number of
columns, as there is a function node at each point in the grid), the ’actual’ size
may be much smaller as some function nodes are not connected. For example,
in figure 1, the middle node in the first column is not connected (i.e. its output,
labelled 5, is not used).

There are a number of important points which can be made about this repre-
sentation. Firstly, large parts of the representation may not be connected to the
rest of the program, and so a single mutation may connect in large ’subprograms’
allowing ’large jumps’ in the search space. Secondly, as information flows from
left to right through this representation, the output of a computation (i.e the
output value at some point in the 2D grid) can be used multiple times by any
function nodes appearing to the right of it. This is in contrast to tree based GP
where no reuse occurs. It is this second point which concerns us in this paper.

CGP has been applied to a variety of problems including function regression
and boolean problems. A CP typically has more than one output. Mathemati-
cally a function has only a single output (i.e. an element in one set maps to an
element in a second set). However, we can think of a CP representing a number
of functions (which may share parts of the same representation). For example,
the CP may be used to control a robot with two wheels, the two outputs con-
trolling each of the wheels. This is similar to artificial neural networks, where
there are typically multiple outputs.

In the remainder of this paper, we look at related work using DAGs as a
representation in section 2. In section 3 we introduce CP, and in section 4 we ex-
amine reuse in different types of representation. Before proving the main results
of this paper in section 6 we provide some preliminary definitions in section 5.
We end with a section summarising and concluding.

2 Related Work

Handley [4] uses a DAG to store a population of trees, rather than a forest of trees
(i.e. a set of trees). This has a two benefits. Firstly, identical subtrees (down to the
leaves) only need to be represented once. Miller [3] does this within an individual,
but Handley [4] does this across the whole population. While there may not be
identical subtrees within an individual program, there may be identical subtrees
in individuals in the population. Secondly, time is saved by caching the value
for each subtree for each fitness case. This information is copied to the next
generation so values only need to be computed once. Handley’s method achieves
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good improvements in the amount of space needed and the run time of a GP
algorithm.

Keijzer [5] continues Handley’s [4] work using minimal DAGs to store a pop-
ulation. Roberts [6] also applies this method of representing a population as a
DAG to a medical imaging problem. He identifies a trade off between the time to
find a subtree in the cache and the time to evaluate the subtree. The method is
developed by introducing ways to add and remove subtrees from the cache. One
interesting point common to both of these works is that as time increases (i.e.
the number of evaluations), the accumulated number of evaluations increases
linearly, whereas uncached versions climb much more steeply.

CGP represents programs as DAGs, rather than as trees. As a CP has a
number of outputs, a CP could be considered as representing a population of
programs. The same idea of representing duplicate subtrees once by referring to
an index of a subtree is the same in CP as it is with storing a population as a
DAG.

3 Cartesian Genetic Programming

In CGP the genotype is a string. User defined parameters set the number of
rows and columns. In this example (see figure 1), we have 3 rows and 3 columns.
Each node is described by 3 integers, the first two are the inputs and the third
is which function from the function set is to be placed at the location. The
first 3x3 integers thus describe the function nodes found in the first column of
the CP. For example, the function set {+, −, ∗, /} is represented by the integers
{1, 2, 3, 4} respectively. Each of these functions has arity 2, i.e. takes two inputs.
The inputs to the whole program are labelled 1, 2 and 3 which are listed on
the left. An example of a genotype is the following integer string; (We have put
commas in to make the list more readable, but do not appear in the genotype).
The interpretation of this string is shown in figure 1.

2 1 3, 3 2 1, 2 3 2, 6 6 3, 4 2 4, 2 6 3, 2 2 2, 7 8 1, 7 9 3

The outputs of each function node are labelled incrementally, starting with the
top right node with output labelled 4 (as we have program inputs 1, 2, 3) and the
final node, bottom right has output labelled 12. The integer string is interpreted
in groups of 3 integers. Consider the first set of 3 integers from the genotype,
namely 2 1 3. The first two numbers describe the input to the function, in this
case inputs 2 and 1. The next number, 3, is the function this node performs, in
this case multiplication (∗). There are 3 outputs from this program. Some nodes
are not connected e.g. the middle node in the first column (function node with
output 5). There is reuse, the output from the bottom node in the first column
(labelled output 6) is used 3 times by function nodes in the middle column. Note
that in the proof and in figure 3, we represent a CP as a tree with overlapping
subtrees (i.e. we are only concerned with the connected nodes). The number of
leaves in a CP never needs to exceed the number of terminals as function nodes
in the program can refer directly to the terminals.
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Fig. 1. Visual representation of a CP

4 Reuse in Different Types of Representations

Some representations allow reuse of component parts, other representations do
not. In this section we contrast three different types of representation used in the
evolution of programs. Each have increasing flexibility in the type of reuse which
is allowed. In the first type of representation, tree based, no reuse is supported
at all. In the second type, CP, reuse of previously expressed subtrees (down to
the leaves) is permitted. In the third type of representation, ADFs, arbitrary
subtrees may be reused. The ability of reuse has effects on the complexity of a
function expressed with each representation.

To describe these representations the following terminology is used. The node
at the top is called the root node. A tree has a single root node. A CP may have
more than one root node as it may have more than one output. The nodes at
the bottom are called leaf nodes. The remaining nodes in the ‘body’ of the tree
are called non-terminal nodes. The root node is a special case of a non-terminal
node. The leaf nodes correspond to terminals from the terminal set and the
non-terminals correspond to functions from the function set.

In a tree there is no reuse (see figure 2). Each node in a tree is executed
once or not at all. There are two ways a tree representation may be executed,
top down or bottom up. In the bottom up case, each of the leaf nodes would

a c c aab

/

--++

+

*

ba

Fig. 2. A function represented as a tree. Each node may be executed once during a
single computation and no reuse is permitted.
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Fig. 3. A tree based representation on the left and a CP of the same function on the
right. In tree based representation on the left, two subtrees down to the roots are
identical (both are circled by ellipses). On the right, in a CP representation identical
subtrees can be represented once (shown by a single subtree circled by an ellipse).

be assigned a value and these are passed up the tree to the nodes above which
makes their calculation and pass the output value up to non-terminal nodes
above. Eventually a value emerges from the root node. Each node is executed
exactly once. In the top down case, we start at the top and evaluate downwards.
The important difference between top down and bottom up evaluation can be
illustrated with the following example. If a node represents the logical function
AND, and the left hand subtree evaluates to false, time can be saved by not
evaluating the right hand branch as we can already determine the value of this
computation (false). Similarly if a node represents an IF-THEN-ELSE function,
once the condition part of the subtree is evaluated, we do not need to evaluate
both the THEN and ELSE subtrees as only one of the computations is required
depending on the condition of the IF subtree. In the top down case each node
may be evaluated once or not at all, whereas in the bottom up case each node
is evaluated exactly once. If we were to trace out the path from a leaf node to
the root node, there would only be one path.

Given a function expressed as a tree using a given primitive set, what happens
to the complexity of the function when we express it as a tree in terms of a
different primitive set. The depth is bounded by a multiplicative constant and
the number of nodes may potentially increase exponentially.

In order to illustrate the similarities and distinctions of CP with tree based
data structures and ADFs, we represent them in a similar fashion. Instead of
information entering from left and leaving on the right (as in figure 1) we rotate
the diagram so information flows from bottom to top. We also remove the grid
and only show the connected nodes. Thus we drop the left-to-right grid based
representation of figure 1 and represent CPs as trees with overlapping subtrees
(where the overlap is all the way down to the terminals) (as in figure 3).

As data enters at the leaf nodes, it is processed and passed further up the
tree. Any node further up the tree may make use of any output further down the
tree. In [3] this is referred to as ‘Automatic Re-used Outputs’ (AROs), where
the point is made, “A potential disadvantage is that AROs are not as general
as ADFs as they can only re-use an output with the same inputs.” Indeed, it is
at the heart of the proof that ADFs with the same inputs (i.e. terminals) is the
reason why complexity is invariant with respect to the terminal set.
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Fig. 4. A tree based representation on the left and a program with an ADF on the
right. Two identical subtrees on the right, are represented once on the left but referred
to twice. The module contains 3 nodes and takes 4 arguments.

If we were to trace out the path between a leaf node and an output node, we
would find that there could be multiple paths between an input and an output
node (see figure 3). If two paths overlap, they must overlap all the way down to
the leaf node. CPs can be evaluated from the bottom up or top down.

With ADFs, arbitrary subtrees can be defined as modules and an ADF can
take different arguments as inputs. This is in contrast to CPs, where subtrees can
be reused, but must be subtrees down to the leaf nodes. On the left of figure 4
is a tree, with two subtrees which are identical, indicated by the ellipses. In a
representation capable of expressing modules, arbitrary repeated structures can
be defined once, and called when needed with the appropriate arguments. On
the right, the same function is represented, but the identical structures in the
previous tree based representation are represented once (in the ellipse), and is
referred to twice in the main tree.

The main difference between CP and ADFs is that ‘modules’ defined in CP do
not take any arguments (and are therefore modules with zero arity i.e. terminals).
ADFs are modules which may have non-zero arity, and are therefore modules
that can be called with different arguments each time.

If we trace a path down from the root node in an ADF representation, two
paths may overlap. If the do overlap, there is no guarantee that they will ter-
minate at the same leaf node (essentially as ADFs can be called with different
arguments). This is in contrast to CP, where if paths do overlap, they are guar-
anteed to end at the same leaf node.

In summary, ADFs are the vehicle for reuse. Arbitrary functions can be de-
fined (using the operation of composition and a predefined set of primitives), and
can be used as if they are new primitives, i.e. called when needed with different
arguments each time. With CGP, a new set of terminals can effectively be defined
and this set can be called when needed. A terminal is effectively a function with
no input (i.e. arity zero). Trees, on the other hand, have no mechanism for reused.

5 Preliminary Definitions

In this section we give a number of definitions which are similar in nature to
those in [2]. These definitions are needed for the proof in the following section.
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Definition 1 (terminal set, function set, primitive set). The terminal set
t is the set of inputs to the program. These are typically problem variables and/or
constants. The function set f is the basic functions GP uses to construct more
complex functions. The primitive set p is the union of the function set f and the
terminal set f , i.e p = t ∪ f . These definitions are taken from [1] (section 5.1).

Definition 2 (size). The size of the instance of a CP representation is the
number of nodes it contains.

Note that under this definition, if nodes are not connected in to the overall
representation then they still contribute to the size. Alternatively we could have
defined size to be the number of connected nodes, but this makes no difference
when we consider complexity which is defined in terms of the minimum size.

Definition 3 (equally expressive). Two primitive sets are equally expressive
if they can express the same set of functions in finite size.

For example, the sets {NAND} and {NOT, AND, OR} are logically complete
(i.e. can express all logical functions) and are therefore equally expressive. The
programming languages Java and C are both Turing Equivalent and are therefore
equally expressive. While this definition tells us if two primitive sets are equally
expressive or not, we need to know how to construct a function in a new primitive
set given the function expressed in an old primitive set. This is done using a
special CP we call a dictionary.

Definition 4 (dictionary). A dictionary, Dt1,t2, is the CP which takes the
inputs t1 and has outputs t2, where t1 and t2 are terminal sets. The function
nodes are from the primitive setf . The size of the dictionary must be finite.

Each member of the set t1 can be expressed in terms of p2 = t2 ∪ f . In this
paper we are not concerned with switching function sets, only terminal sets.
The existence of the pair of dictionaries Dt1,t2 and Dt2,t1 is a necessary and
sufficient condition to imply that p1 (= t1 ∪ f) and p2 (= t2 ∪ f) are equally
expressive.

Definition 5 (complexity). The complexity, C, of a function (or set of func-
tions) f under the CP representation, with respect to a fixed primitive set p, is
the size of the smallest CP which can represent the function (or set of functions),
denoted by Cp(f).

Definition 6 (complexity of a dictionary). The complexity of a dictionary
Dt1,t2 is the size of the smallest dictionary which expresses the set of terminals
t2 in terms of a CP using primitive set p1 (= t1 ∪ f). We write Kt1,t2 for the
complexity of dictionary Dt1,t2.

Strictly, this definition is not necessary as it is implied by the previous two def-
initions of dictionary and complexity. However, we make this definition explicit
as it is made use of in the proofs.
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Definition 7 (translate terminal set). Given a function expressed in terms
of one primitive set, p1 ( = t1 ∪ f), we can express the same function in terms
of a second primitive set, p2 (= t2 ∪ f). As the function sets are the same we
need only consider the terminal sets. The process of re-expressing the function
in terms of p2 is called translation of terminal set from p1 to p2.

6 Complexity

We present 3 theorems regarding the complexity of a function when expressed
using a CP representation. We prove that the complexity of a function is invariant
under translation of terminal set, if the two primitive sets are equally expressive.
We then go onto prove the tightest upper and lower bounds on the complexity
of an arbitrary function when expressed using primitive sets with a different
terminals sets but the same function set.

Theorem 1 (complexity). The complexity of a function under the CP repre-
sentation is invariant under translation of terminal set, within a constant Kt1,t2
(the complexity of the dictionary Dt1,t2) provided the primitive sets are equally
expressive.

Ct2(f) ≤ Ct1(f) + Kt1,t2 (eq. 1)

Note, strictly we should talk about complexity with respect to a primitive set,
but as the function set remains fixed here we drop reference to it.

Proof. Given that the two primitive sets are equally expressive (i.e. p1 = t1 ∪ f
and p2 = t2 ∪ f), we can simulate the set of terminals t2 using the dictionary
Dt1,t2. As p1 and p2 are equally expressive, the dictionaries Dt1,t2 and Dt2,t1
both exist. These are represented as subtrees of the new CP. As we are using a
CP, we only need to represent the new set of terminals once. We illustrate this
graphically (see figure 5).

Theorem 2 (smallest bound). Kt2t1 is the smallest bound.

Proof. Some functions will not depend on all of the terminals in a given terminal
set, therefore these terminals do not need to be translated and do not need to

Function 
expressed 
in terms 
of t1
and f

t1 
expressed 
in terms 
of t2
and f

Fig. 5. A visualization of the proof. The box on the right is a CP expressed in terms
of a primitive set f ∪ t1. The program has 2 outputs and 3 inputs. The box on the left
is the CP expressing the set of functions t1 in terms of f ∪ t2. Hence, the combination
of CPs expresses the function in terms of f ∪ t2 without any reference to t1.
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be expressed by the dictionary. However in the worst cases, all of the terminals
are required to be translated and the complete dictionary is needed. Therefore
the smallest size of the bound is the complexity of the dictionary (i.e. the size
of the smallest dictionary which translates all of the terminals).

Theorem 3 (lower bound). Ct2(f) ≥ Ct1(f) − Kt2,t1

Proof. Consider the above equation (eq. 1). Consider the translation from ter-
minal set t2 to terminal set t1, i.e. Ct1(f) ≤ Ct2(f) + Kt2,t1 then rearrange the
equation Ct1(f) − Kt2,t1 ≤ Ct2(f) We can also say this is the tightest lower
bound by an identical argument to that in the previous proof.

We can combine the above results into a single expression

Ct1(f) − Kt2,t1 ≤ Ct2(f) ≤ Ct1(f) + Kt1,t2

and say that these bounds are the tightest obtainable.

7 Summary and Conclusions

CP uses a DAG to represent programs, rather than using trees which are typically
used in GP. DAGs allow some reuse of subtrees, and this reuse has an affect
on the complexity of a function when expressed using a DAG. In contrast, a
tree representation offers no reuse as each branch of the computation must be
represented explicitly, even if subtrees are identical.

We proved that the complexity of a function, when expressed by a CP, is inde-
pendent of the terminal set (within an additive constant), provided the primitive
sets are equally expressive. This was essentially done with a simulation argument.
We also proved that the tightest upper bound on the complexity is the complex-
ity of the set of functions (i.e. the complexity of the dictionary) corresponding
to the new terminal set. We also proved the tightest lower bound on complexity
is symmetric to this. Thus the complexity of a function is sandwiched sym-
metrically between the complexity of the function with reference to a different
terminal set.

In [2] we proved that the complexity of a function is independent (within
an additive constant) of the function set and terminal set provided the sets are
equally expressive and the representation is capable of expressing modules (i.e.
ADFs). The results in this paper are completely analogous to those in [2], and
can be thought of as a special case. As CPs are not as flexible as ADFs in the
amount of reuse allowed, one would not expect the same degree of robustness
regarding the translation of function set and/or terminal set.

What we have not addressed in this paper is how to use these results to
design more efficient search algorithms for CGP. There are two benefits from
representing a program as a DAG; the amount of space needed to express a given
function is reduced and also the amount of time needed to compute a function for
a given input is reduced. We also believe that similar results regarding complexity
exist for Binary Decision Diagrams and Artificial Neural Networks as there is
the possibility of reuse in these representations.
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Abstract. This paper presents a novel genetic algorithm for jointly
optimizing source and channel codes. The algorithm uses a channel-
optimized vector quantizer for the source code, and a rate-punctured
convolutional code for the channel code. The genetic algorithm enhances
the robustness of the rate-distortion performance of the channel-
optimized vector quantizer, and reduces the computational time for
finding the best rate-punctured convolutional code. Numerical results
show that the algorithm attains near optimal performance while having
low computational complexity.

Keywords: Vector Quantization, Genetic Algorithm, Error Correct
Coding.

1 Introduction

The objective of designing a robust communication system is to minimize the
end-to-end average distortion of the system over a noisy channel. The basic tech-
niques for the design can be classified into three classes: the channel-optimized
source coding, the source-optimized channel coding, and the combination of these
two classes. The channel-optimized source coding techniques design source codes
of the communication system optimally matched to a given noisy channel. Typ-
ical examples are the source-optimized vector quantization (COVQ) [1] and its
variants. The source-optimized channel coding techniques usually construct un-
equal error protection (UEP) schemes best matched to a given source code.
Some variable-rate channel codes such as rate-compatible convolutional codes
(RCPCs) [3] have been found to be effective for the implementation of the UEP.
The application of RCPCs to UEP is realized by a bit allocation process, which
determines the degree of error protection to different locations of the binary
channel indices representing VQ codewords.

The combination of channel-optimized source coding and source-optimized
channel coding may further improve the performance of the joint design. An
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iterative procedure optimizing source code and channel code one at a time has
been employed to realize this combination [2]. Although the iterative scheme
is effective, it has two major drawbacks. First, its source code at each iteration
is designed using the COVQ, which usually falls into a poor local optimum.
Therefore, the results of the iterative scheme may also be a local optimal solu-
tion. Second, each iteration of the scheme consists of the design of both source
and channel codes. Its computational complexity is higher than the algorithms
designing only source or channel codes. In addition, the full-search bit allocation
scheme is used for the UEP, which may require high computational time for long
binary channel indices [4].

One way to prevent the joint design from getting trapped in a poor local
optimum is to adopt the stochastic optimization. An extensively used algorithm
for the stochastic optimization is the genetic algorithm (GA) [6], which has been
found to be effective for various vector quantizer (VQ) design algorithms [5].
With less computational complexity, the GA-based bit allocation scheme for
UEP [4] can also attain comparable performance to that of the full-search bit
allocation scheme. Therefore, an iterative scheme based on the COVQ and the
UEP with GA may achieve better performance as compared with that of the
iterative scheme [2] without GA. Nevertheless, since there are two GA optimiza-
tions in each iteration with one for the COVQ and the other for the UEP, the
long computational time may still be necessary.

In light of the facts stated above, the objective of this paper is to present a
novel algorithm for the joint design of source and channel codes, which attains
a near global optimal performance while having low computational complexity.
Instead of using the iterative approach, this algorithm employs the GA-based
concurrent scheme for the optimization of source and channel codes. The concur-
rent design requires only one GA optimization so that the algorithm may have
lower computational complexity as compared with its iterative counterpart.

To use the GA in our design, each genetic string has two segments. The first
segment consists of the codewords of the VQ. The second segment contains a pos-
sible bit allocation for UEP. The fitness function for regeneration is the weighted
sum of the end-to-end average distortion and the total number of redundancy
bits. The weight of the redundancy bits in the fitness function determines the
degree of overall error protection. To accelerate the speed of convergence of the
GA, the VQ codewords of each genetic string are optimized further using the
COVQ after the completion of each generation. The results of the COVQ design
are then used for the evolution of the next generation.

2 Problem Formulation

Consider a full-search VQ with N codewords y1, ...,yN . Each codeword yi is
represented by a binary index ci with length n, where n = log N . Let ci(m), m =
1, ..., n, be the m-th bit of ci. Suppose the noisy channel is a binary symmetric
channel (BSC) with bit error rate (BER) ε. In addition, the RCPC is used for
the error correction of binary indices. The set of channel code rates from Table 1
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in [3] (denoted by C) are used to obtain our RCPC candidates. We represent
each candidate code by a vector with dimension n, where the m-th element in
the vector is the channel code rate applied to ci(m). For example, suppose n = 3.
The RCPC code {1/2, 2/3, 2/3} applies the convolutional code with rate 1/2 to
ci(1), and the convolutional code with rate 2/3 to ci(2) and ci(3). The average
transmission rate of the VQ is defined as the average number of bits representing
each source vector after the channel encoding process. Consequently, for a RCPC
code {s1, ..., sn}, the average transmission rate is given by

∑n
m=1

1
sm

.
Let Pk/i be the probability that the binary index ci delivered by VQ encoder

is received as ck by the VQ decoder because of channel errors. We call Pk/i, i, k =
1, ..., N, the index crossover probabilities, which are functions of RCPC and the
bit error rate (BER) of the BSC. Given source codewords and index crossover
probabilities, the average end-to-end distortion, D, is given by

D =
1
wt

t∑
j=1

N∑
k=1

Pk/α(xj)d(xj ,yk), (1)

where w is the vector dimension, {xj}t
j=1 are source vectors, α(xj) is the source

encoder, and d(u,v) is the squared distance between vectors u and v. The goal
of joint design is then equivalent to the following optimization problem:

min
(y1,...,yN )
(s1,...,sn)

1
wt

t∑
j=1

N∑
k=1

Pk/α(xj)d(xj ,yk), subject to
n∑

m=1

1
sm

≤ R, (2)

where R is the constraint on the average transmission rate. To solve this problem,
the Lagrangian method with cost function J can be used, where

J =
1
wt

t∑
j=1

N∑
k=1

Pk/α(xj)d(xj ,yk) + λ

n∑
m=1

1
sm

, (3)

and λ > 0 determines the resulting transmission rate after the optimization.

3 The Algorithms

In this section, four joint design algorithms are presented: the GA-based COVQ
(G-COVQ) algorithm, the GA-based UEP (G-UEP) algorithm, the iterative
combination of G-COVQ and G-UEP (GA-based iterative) algorithm, and the
GA-based concurrent design algorithm.

3.1 G-COVQ Algorithm

We first introduce the COVQ algorithm, which is the basic channel-optimized
source coding technique. In the COVQ design, we assume that the BER ε of
the BSC channel and RCPC rates {s1, ..., sn} are fixed. The index crossover
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probabilities Pk/i, i, k = 1, ..., N, thereby are also fixed. Consequently, the min-
imization of J given in eq.(3) is simply equivalent to the minimization of D.
Hence, the objective of the COVQ design can be stated as finding a set of VQ
codewords yk, k = 1, ..., N minimizing D. It can be shown that, given codewords
yk, k = 1, ..., N , the optimal source encoder α minimizing D should satisfy

α(xj) = arg min
1≤l≤N

N∑
k=1

Pk/ld(xj ,yk), (4)

In addition, given α, the optimal codewords yk, k = 1, ..., N, minimizing D can
be evaluated as

yk =

∑t
j=1 Pk/α(xj)xj∑t

j=1 Pk/α(xj)
(5)

The COVQ algorithm is based on an iterative procedure where source encoder
α and codewords yk, k = 1, ..., N are optimized one at a time using eqs.(4) and
(5), respectively. The major disadvantage of the COVQ is that its performance
is sensitive to the selection of initial codewords, which can be solved by the
G-COVQ algorithm.

Suppose there are G strings in the algorithm. Each string g = {y1, ...,yN}g

is a set of VQ codewords. Let G(q) be the set of G strings after the execution
of the q-th evolution. Let g∗ be the current optimal string during the course of
the GA. We set the initial g∗ as null. In addition, the VQ codewords in G(0)
are formed by randomly selecting source vectors in {xj}t

j=1. Now, suppose the
(q − 1)-th evolution is completed, and the execution of the q-th evolution is to
be done. We then perform the following genetic operations sequentially on the
strings in G(q − 1).

Reproduction of G-COVQ: Since each string in G(q − 1) contains VQ code-
words, their corresponding D can be computed using eq.(1). The inverse of D
is used as a fitness function for each string. There are G reproduction strings
created by the roulette-wheel technique.

Crossover of G-COVQ: On each regeneration string g, {y1, ...,yN}g, the
crossover operation is applied with probability Pc. Out of the total population,
a partner string g′, {y′

1, ...,y
′
N}g′, is randomly chosen. Then an integer random

number b between 1 and n is generated. Both strings are cut into two portions
at position b, and the portions {yb+1, ...,yN} and {y′

b+1, ...,y
′
N} are mutually

exchanged.
Mutation of G-COVQ: For each string g, mutation is performed on each ele-

ment of yk, k = 1, ..., N, with a small probability Pm. Suppose yk is determined
to be mutated. One of the w components of yk is then selected at random. A
random number, taking binary values b or −b, is generated, and is added to the
selected component.

COVQ optimization of G-COVQ: After the regeneration, crossover and muta-
tion operations, the COVQ algorithm is applied to each string g. The initial code-
words and index crossover probabilities for the COVQ design are obtained from
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the VQ codewords and RCPC rates of that string, respectively. The resulting
codewords after the COVQ design will replace the original VQ codewords in that
string. The G strings after the COVQ design are then the strings of the set G(q).

Test for convergence of G-COVQ: After the completion of the COVQ opti-
mization, The D value of each string in G(q) is computed for updating D∗ and
g∗. This completes the execution of q-th evolution of our genetic programming
algorithm. In the algorithm, the evolution continues until the observation of I
consecutive evolutions yielding identical D∗ value.

3.2 G-UEP Algorithm

The G-UEP algorithm can be used to reduce the computational complexity of
the UEP [4]. Let Si be the cluster such that Si = {xj : α(xj) = i}, and zi be
the centroid of Si. We can rewrite eq.(1) as

D =
1
wt

t∑
j=1

d(xj ,yα(xj)) +
1
N

N∑
i=1

N∑
k=1

Pk/id(yi,yk). (6)

Note that, the first term in eq.(6) depends only on the VQ codewords yi and
source vectors xj . Therefore, this term does not change as a function of RCPC
code. The optimal RCPC code only minimizes the second term of eq.(6): 1

N

∑N
i=1∑N

k=1 Pk/id(yi,yk). Since the first term requires higher computational complex-
ity, given a set of VQ codewords {y1, ...,yN}, the objective function J in eq.(3)
for UEP design can be simplified into

L =
1
N

N∑
i=1

N∑
k=1

Pk/id(yi,yk) + λ

n∑
m=1

s−1
m . (7)

The problem of the UEP therefore is equivalent to find a set of RCPC rates
{s1, ..., sn} minimizing the cost function L given in eq.(7) for a fixed set of VQ
codewords. Suppose there are G strings. Each string s = {s1, ..., sn}s is a set
of RCPC rates. Let S(q) be the set of G strings after the execution of the q-th
evolution, where each evolution consists of regeneration, crossover and mutation
operations. Let s∗ be the current optimal string during the course of the GA,
and L∗ be its L value. We set the initial s∗ and L∗ as null and ∞, respectively.
In addition, the strings in S(0) is formed by randomly selecting channel rates in
C. Now, suppose the (q − 1)-th evolution is completed, and the execution of the
q-th iteration is to be done. We then perform the following genetic operations
sequentially on the strings in S(q − 1).

Reproduction of G-UEP: Each string in S(q − 1) in fact is a RCPC code.
Hence, their corresponding L can be computed using eq.(7). The inverse of L
is used as a fitness function for each string. There are G regeneration strings
created after the regeneration operation.

Crossover of G-UEP: This process is similar to that of the G-COVQ with
crossover probability Pc for each string s.
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Mutation of G-UEP: Mutation is performed on each element sm, m = 1, ..., n,
of each string with a small probability Pm. Suppose sm is determined to be
mutated, then a rate selected at random from C is used to replace sm.

Test for convergence of G-UEP: The G strings after these operations are the
strings of S(q). The L value of each string in S(q) is computed for updating
the s∗ and L∗. This completes the execution of q-th evolution of G-UEP algo-
rithm.In the G-UEP algorithm, the evolution continues until the observation of
I consecutive evolutions yielding identical L∗ value.

3.3 GA-Based Iterative Algorithm

In the iterative algorithm, each iteration executes the G-COVQ and G-UEP
sequentially. Let {yf

1 , ...,yf
N} and {sf

1 , ..., sf
n} be the set of VQ codewords and

RCPC rates after the design of the f -th iteration, respectively. Now, suppose
the (f − 1)-th iteration is completed, and the design of the f -th iteration is to
be done. Each iteration contains two steps, which correspond to G-COVQ and
G-UEP design, respectively.

Step 1: Given {sf−1
1 , ..., sf−1

n }, the objective at this step is to de-
sign {yf

1 , ...,yf
N} using the G-COVQ algorithm. The set of RCPC rates

{sf−1
1 , ..., sf−1

n } is used to determine the index crossover probabilities Pk/i, i, k =
1, ..., N, for the computation of D given in eq.(1). The VQ codewords {yf

1 , ...,yf
N}

at the iteration f is then set to be the final current optimal string g∗ after the
completion of G-COVQ.

Step 2: Using the G-UEP, this step finds the RCPC rates {sf
1 , ..., sf

n} best
matched to the VQ codewords {yf

1 , ...,yf
N} designed at the previous step. The

VQ codewords are used to compute the first term in L shown in eq. (7)(i.e.,
1
N

∑N
i=1

∑N
k=1 Pk/id(yi,yk)) for the execution of the G-UEP. The RCPC rates

{sf
1 , ..., sf

n} at the iteration f is then set to be the final current optimal string s∗

after the completion of G-UEP.

Test for convergence of the iterative algorithm: Let Jf be the value of J after
the completion of the f -th iteration. Since each execution of G-COVQ and G-
UEP reduces the J value [5], the iteration algorithm will continue until the
convergence of the sequence {Jf}.

3.4 GA-Based Concurrent Algorithm

In the GA-based concurrent algorithm, each string g in the algorithm can be
divided into two segments: the VQ codewords segment {y1, ...,yN}g and the
RCPC rates segment {s1, ..., sn}g. Let G(q) be the set of G strings after the
execution of the q-th evolution, where each evolution consists of regeneration,
crossover, mutation and COVQ optimization operations. Let g∗ be the current
optimal string during the course of the GA and J∗ be its J value. We set the
initial g∗ as null, and initial J∗ = ∞. In addition, the VQ codewords and RCPC
rates of each string in G(0) are formed by randomly selecting source vectors
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and channel rates in {xj}t
j=1 and C, respectively. Now, suppose the (q − 1)-th

evolution is completed, and the execution of the q-th evolution is to be done.
Reproduction of GA-based concurrent algorithm: We use the inverse of J given

in eq.(3) as the fitness function for each string in G(q − 1). There are G regen-
eration strings created after the regeneration operation.

Crossover of GA-based concurrent algorithm: On each regeneration string g
the crossover operation is applied with probability Pc. Out of the total popula-
tion, a partner string g′ is randomly chosen. Then two integer random numbers
b1 (between 1 and N) and b2 (between 1 and n) are generated. The VQ code-
words segment and RCPC rates segment of both strings are cut into two portions
at positions b1 and b2, respectively. Portions of each segment of strings g and g′

are mutually exchanged. The resulting strings are then given by

g = {y1, ...,yb1 ,y
′
b1+1, ...,y

′
N , s1, ..., sb2 , s

′
b2+1, ..., s

′
n}g,

g′ = {y′
1, ...,y

′
b1 ,yb1+1, ...,yN , s′1, ..., s

′
b2 , sb2+1, ..., sn}g′ .

Mutation of GA-based concurrent algorithm: For each string g, mutation is
performed on each element of yk, k = 1, ..., N, and sm, m = 1, ..., n, with a
small probability Pm. Suppose yk is determined to be mutated. One of the w
components of yk is then selected at random. A random number, taking binary
values b or −b, is generated, and is added to the selected component. For each
sq determined to be mutated, a rate is first selected at random from C, and sq

is then replaced by the rate.
COVQ optimization of GA-based concurrent algorithm: After the regenera-

tion, crossover and mutation operations, the COVQ algorithm is applied to each
string g. The initial codewords and index crossover probabilities for the COVQ
design are obtained from the VQ codewords and RCPC rates of that string,
respectively. The resulting codewords after the COVQ design will replace the
original VQ codewords in that string. The G strings after the COVQ design are
then the strings of the set G(q).

Test for convergence of GA-based concurrent algorithm: After the comple-
tion of the COVQ optimization, the J value of each string in G(q) is com-
puted for updating g∗ and J∗. This completes the execution of q-th evolution of
GA-based concurrent algorithm. The evolution continues until the observation
of I consecutive evolutions yielding identical J∗ value.

4 Simulation Results

This section presents some simulation results of various algorithms for the joint
design of source and channel codes. The vector dimension is w = 8 for all the
experiments. The BER of the BSC channel is 0.01. The Gauss-Markov sequences
(84000 samples) with ρ = 0.9 are used for both training and performance mea-
surement.

Figure 1 elaborates the dependence of the GA-based concurrent algorithm on
the population size G for λ = 1. The number of codewords is N = 32. Each
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Fig. 1. The dependence of the GA-based concurrent algorithm on the population size G

Table 1. The mean, minimum, maximum and standard deviation values of cost J from
100 independent trials for various λ values

λ GA-based Concurrent GA-based Iterative
min max mean variance min max mean variance

5 30.42 31.74 30.63 0.13 41.50 49.03 43.55 1.14
10 58.53 59.77 58.76 0.20 70.58 87.89 76.38 3.14
15 86.64 91.72 87.00 0.73 91.27 129.78 103.88 5.35

sample point in the figure is an average value over 100 independent executions
using randomly chosen initial genetic strings. From the figure, we observe that
the average J decreases as G increases. However, the reduction becomes negligi-
ble when G ≥ 15. Since the computational time grows with G, we choose G = 15
for the subsequent experiments for attaining low computational complexity.

Table 1 compares the GA-based concurrent algorithm with its major coun-
terpart, the GA-based iterative algorithm. The comparison includes the mean,
minimum, maximum and standard deviation values of J from 100 independent
trials of each algorithm for various λ values. It can be observed from the table
that the GA-based concurrent algorithm has lower mean, minimum, maximum
and standard deviation values for each λ as compared with the GA-based iter-
ative algorithm. This implies that the GA-based concurrent algorithm provides
robust solutions with superior performance. The GA-base iterative algorithm
does not perform well because it optimizes source and channel codes one at a
time iteratively. Poor source codes obtained from the first step of the algorithm
will be used to design the channel codes at the second step. This may result in
a poor local optimum solution.

Figures 2 and 3 show the rate-distortion performance of various algorithms
having the same number of VQ codewords N = 128. It is not surprising to
observe from Figure 2 that the GA-based concurrent algorithm significantly
outperforms the COVQ, G-COVQ and G-UEP algorithms, which only design
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either a source code or a channel code. In addition, as illustrated in Figure 3,
the GA-based concurrent algorithm also has superior rate-distortion performance
over the GA-based iterative algorithm and Goldsmith-Effros algorithm[2], which
design both the source and channel codes iteratively. These observations are
consistent with those shown in Table 1, where the concurrent algorithm attains
lower cost for the optimization.

The average CPU time of various algorithms for the experiments shown in
Figures 2 and 3 are included in Table 2. It can be observed from the table that
the average CPU time of the GA-based concurrent algorithm is only 2.1 hrs. By
contrast, because the Goldsmith-Effros algorithm uses the full-search scheme for
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Table 2. The average CPU time (measured on 1.6G HZ Pentium IV) of various algo-
rithms for the experiments shown in Figure 2 and 3

Algorithm G-COVQ GA-based GA-based Goldsmith and
Iterative Concurrent Effros [2]

CPU time 1.9 hrs 7.3 hrs 2.1 hrs 60.3 hrs

finding the channel codes, it needs 60.3 hrs for the VQ design. All these facts
demonstrate the effectiveness of the GA-based concurrent algorithm.

5 Conclusion

The GA-based concurrent optimization algorithm has been found to be effective
for the joint design of source and channel codes. Experimental results show that
the algorithm outperforms its iterative counterparts with lower CPU time. The
algorithm therefore can be an effective alternative for the applications where
both low computational complexity and high performance are desired for the
design of robust transmission systems.
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Abstract. This paper investigates developmental evaluation in Genetic 
Programming (GP). Extant GP systems, including developmental GP systems, 
typically exhibit modular and hierarchical structure only to the degree it is built-
in by the designer; by contrast, biological systems exhibit a high degree of 
organization in their genotypes. We hypothesise that even when GP systems are 
subject to changing environments, for which the adaptability arising from 
modular structure would be advantageous, the benefit is at the species rather 
than individual level, so that selection is very weak. By contrast, biological 
systems are selected repeatedly throughout their development process. We 
suggest that this difference is crucial; that if an individual is evaluated multiple 
times throughout its development, then modular structure can provide an 
adaptive advantage to that individual, and hence can be selected for by 
evolution. We investigate this hypothesis using Tree Adjoining Grammar 
Guided Genetic Programming (TAG3P) [1], which has good properties for 
supporting evaluation during incremental development. Our preliminary results 
show that developmental TAG3P outperforms both original TAG3P and 
standard tree-based GP on an appropriate problem, in ways which suggest that 
modular solutions may have been developed. 

1   Introduction 

Genetic Programming (GP) was developed by Koza [2] in 1992 It is an automatic 
programming methodology using simulation of evolution to discover functional 
programs to solve a problem. Genetic programming breeds a population of trial 
solutions using biologically inspired operators, which include reproduction, crossover 
(sexual recombination), mutation, and forms of natural selection. In essence, it uses 
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evolutionary search methods to search for solutions to given problems within an in-
principle unbounded space of expressions. However, the solutions found are generally 
poorly structured and highly disorganised, exhibiting no hierarchical or modular 
structure. An individual in a genetic programming system is generally expected to 
solve problems immediately, without the benefit of a developmental phase. By 
contrast, the natural evolutionary systems on which it is based are able to evolve 
hierarchical modular structure (e.g. the homeobox gene complex). Generating 
hierarchical, modular structures would greatly benefit GP, potentially dramatically 
increasing the scalability of GP applications, as well as the adaptability of GP 
solutions.  

There have been a wide range of approaches to solving this problem in GP. For 
example, Angeline [3] developed a technique called Module Acquisition, which is 
based on the creation and administration of a library of modules for the automatic 
generation of subroutines. Other studies have investigated Automatically Defined 
Functions (ADF) [4], which is probably the most popular of the modularization 
methods used in GP. Rosca investigated an Adaptive Representation [5], which is 
based on the discovery of useful building blocks of code. This approach greatly 
improved search efficiency on the problem’s considered. However, all these 
approaches involve some level of programmer intervention, thus imposing a level of 
modularity that nature has been able to evolve for itself. 

Recently, interest in developmental approaches in Evolvable Hardware has begun 
to increase. Haddow et al. [6] used Lindenmayer systems for digital circuit design, 
while Miller [7] developed Cartesian Genetic Programming for the automatic 
evolution of digital circuits, and attempted to evolve a cell that could construct a 
larger program by iteration of the cell’s program.  

Nevertheless, modular structure has not been clearly demonstrated in existing 
developmental GP systems. We argue that this is because modular structure, if used 
for a single evaluation as in most artificial developmental systems, only has adaptive 
advantages to entire species, not to particular individuals, and hence imposes very 
weak selection pressure in evolution. In developmental biological systems, on the 
other hand, evaluation is continuous throughout development (if the individual is 
insufficiently fit to survive at a particular stage of development, the fitness it would 
exhibit at later stages is immaterial). A modular structure, which allows biological 
sub-systems to develop in synchrony throughout development, can thus provide a 
selective advantage to the individual. Our working hypothesis is that, if the individual 
is evaluated on multiple problems at different stages of development, then modular 
structure can provide an adaptive advantage to that particular individual, and hence 
can be selected for by evolution. This hypothesis is investigated using the Tree 
Adjoining Grammar Guided GP (TAG3P) representation, which has ideal properties 
for supporting evaluation during incremental development. In particular, this 
representation has a feasibility property, allowing any expression tree to be evaluated, 
regardless of the detachment of any number of its sub-trees. This means that smaller 
sections of the tree can easily be tested on simpler problems, providing a 
straightforward way to test our hypothesis at relatively low implementation cost.  

In these experiments, the developmental process is extremely naïve, consisting in 
effect of undirected growth of each individual (in implementation, we evolve the 
whole tree but evaluate increasing portions of it). We do not propose this as a serious 
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developmental model; we deliberately use a minimal developmental model to empha-
sise the crux of this paper, namely the effect of evaluation during development. 

The paper outline is as follows. The next section briefly describes Tree Adjoining 
Grammars (TAGs) and TAG based Genetic Programming. Section 3 introduces our 
Developmental Evaluation method based on Tree Adjoining Grammar Guided 
Genetic Programming (DEVTAG). Experimental setups are described in section 4. 
Section 5 and 6 provide the results and discussion. Conclusions and future work are 
laid out in the last section. 

2   Tree Adjoining Grammar, TAG Based Genetic Programming 

The following section gives a brief, somewhat intuitive introduction to TAG; a fuller 
description of TAG may be found in [1]. 

2.1   Tree Adjoining Grammars (TAGs) 

TAGs are tree-generating and analysis systems, first proposed by Joshi [8] for Natural 
Language Processing (NLP) purposes. 

The aim of TAG is to more directly represent the structure of natural languages 
than is possible in Chomsky languages, and in particular, to represent the process by 
which natural language sentences can be built up from a relatively small set of basic 
linguistic units by inclusion of insertable sub-structures. Thus ‘The cat sat on the mat’ 
becomes ‘The black cat sat lazily on the mat’ by the subsequent insertion of the ele-
ments ‘black’, and ‘lazily’. In more detail, a tree-adjoining grammar comprises of a 
quintuple (T, V, I, A, S), where: 

-  T is a finite set of terminal symbols. 
-  V is a finite set of non-terminal symbols (T  V = ∅).  
-  S  V is a distinguished symbol called the start symbol. 
-  I is a set of initial trees, characterised by all interior nodes being labeled by non-

terminal symbols, while the nodes on the frontier are labeled by terminals.  
-  A are auxiliary trees, characterised by all internal nodes being labeled by non-

terminal symbols, while nodes on the frontier are labeled by terminals, except 
for one special node called the foot node. A foot node must be labeled with the 
same non-terminal symbol as that labeling the tree’s root node. The convention 
of marking the foot node with an asterisk (*) is followed here.  

The trees in E = I  A are called elementary trees. Initial trees and auxiliary trees 
are indicated as α and β respectively. A tree with root labeled by non-terminal symbol 
X is called an X-type elementary tree.  

The key operation used with TAG is adjunction. Adjunction builds a new tree γ 
from an auxiliary tree β and a tree α by inserting β into α at a specified place. 
Adjunction is illustrated in Figure 1. More formally, if a tree α has an interior node 
labeled A, and β is an A-type tree, the adjunction of β into α to produce γ is as follows: 
Firstly, the sub-tree α1 rooted at A is temporarily disconnected from α (consider  
Figure 1.a). Next, β is attached to α to replace the sub-tree α1(1.b). Finally, the process 
of building γ  is completed when α1 is attached back to the foot node of β (1.c). 
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Fig. 1. An example of the Adjunction operator 

2.2   TAG Based Genetic Programming 

Tree Adjoining Grammar Guided Genetic Programming (TAG3P) [1] is a grammar 
guided genetic programming system. One of the most important of the TAG represen-
tation’s properties is a feasibility property, namely that any rooted subtree of a valid 
TAG tree is also a valid TAG tree. Thanks to the feasibility property, in growing a 
derivation tree from the root, one can stop at any time and still have a valid derivation 
tree as well as a valid derived tree. For example, if a derivation tree consisted of β1 
adjoined to α (from figure 3), we could either stop at α before considering β1, gener-
ating the derived tree x, or consider the entire tree and generate x+x. 

3   Developmental Evaluation Based on TAG3P 

The problem chosen for investigating our hypothesis is the symbolic regression prob-
lem with simple polynomials as target functions. This kind of symbolic regression 
problem is well-known for its increasing difficulty with polynomial degree [2, 9]. In 
particular we experimented with the series of polynomial functions as follows: F1  
= X, F2 = X2+ X, F3 = X3+X2+X, F4 = X4+ X3+X2+X … F9 = 
X9+X8+X7+X6+X5+X4+X3+X2+X. We expect this increasing difficulty could allow us 
to exploit the developmental evaluation approach. 

To fulfil the requirement of tackling increasingly difficult problems throughout  
development, the individual is separated into multiple layers, with more of the indi-
vidual being used for the more difficult fitness functions. Specifically, the individual 
is separated as below: 

Depth 2 for function F1 = X 
Depth 4 for function F2 = X2+X 
… 
Depth 18 for function F9 = X9+X8+X7+X6+X5+X4+X3+X2+X.  

We use tournament selection, which only requires a fitness ordering of individuals. 
For DEVTAG, we use a special multi-stage comparison to generate this ordering.  
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Corresponding to the insight that later-stage fitness is only important if the individual 
survives earlier stages, we compare individuals on simpler problems first; only if they are 
roughly equivalent on the simpler problems do we evaluate them on more complex ones. 

We denote the fitness of an individual I evaluated at stage j by F(I,j). For two indi-
viduals (I1, I2), the comparison process (for minimisation) is:  

i := 1; 
While |F(I1, i) - F(I2, i)| < ε 
 i := i + 1; 
if (F(I1, i) < F(I2, i)) 
 then I1 wins 
 else I2 wins 

An example of this algorithm is shown in Figure 2, comparing the individuals I1 
and I2 with fitness value arrays (corresponding to the 9 different stages),  I1(10.05, 
14.67… , 20.35), and  I2 (10.06, 14.66, … , 10.35). In this case, I2 would be chosen 
for evolution. 

 

 

Fig. 2. An example of comparing two individual in DEVTAG 

 

Fig. 3. Elementary trees for Glex 
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The context-free grammar G for this problem has a function set including unary 
and binary operators {+, - ,*, /, sin, cos, log, EXP}. The terminal set is X. Formally: 

G = (N,T,P,S} 
S = EXP – the start symbol 
N = {EXP, PRE, OP, VAR} 
T = {X, sin, cos, lg, ep, +, -, *, /},  (ep is exponential, lg is log function) 

The corresponding LTAG Glex is shown overleaf 
Glex= {N={EXP, PRE, OP,VAR},T={X, sin, cos, log, ep,+, -, *, /, (, )}, I, A) where 
I  A is as in Figure 3. 

4   Experimental Setups 

To investigate the effect of developmental evaluation on TAG3P, three experimental 
settings have been used with different population sizes (POPSIZE = 100, 250, 500 
and 1000), with the maximum generation size (MAXGEN) changing correspondingly 
to keep a constant budget of 229,500 (9x51x500) function evaluations: 

1. DEVTAG: using developmental evaluation, as described above  
2. GP: A standard Koza-style tree-based GP run for evolving F9, using popula-

tion size POPSIZE, evolving until the evaluation budget is used. 
3. TAG: This treatment is designed to address a potential issue, that any differ-

ences might arise from differences in representation. The GP experiment is  
repeated using TAG representation, but otherwise a standard tree-based GP al-
gorithm (the TAG3P system). 

Table 1. Parameter settings for the symbolic regression problem 

Objective Find a function that exactly fits a given sample of 
20 (xi, yi) data points. 

Success Predicate Sum of errors over 20 points < ε = 0.01 

Terminal sets X  - the independent variable 

Operators( Function set) +,-,*,/, sin, cos, exp, log 

Fitness Cases The sample of 20 points in the interval [-1..+1]. 

Fitness Sum of the errors over 20 fitness cases. 

Genetic Operators Tournament selection(3), sub-tree crossovers and 
sub-tree mutations using on TAG3P, normal 
standard crossovers and muations using on GP 

Parameters The crossover probability is 0.9. The mutation 
probability is 0.1. 

Min/Max initial zise on TAG3P 2  to 1000 

Max depth using for GP 20 
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5   Results 

Table 2 shows the absolute number of successful runs out of 100 for each of the three 
treatments and four different population sizes.  Note that the 0 entries mean that the 
GP runs were never successful. 

Table 2. Successful runs (from  100 runs) 

 POPSIZE=100 POPSIZE=250 POPSIZE=500 POPSIZE=1000 
DEVTAG 13 33 27 3 
TAG 3 8 9 4 
GP 0 0 0 0 
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Fig. 4. Cumulative success frequency of 
DEVTAG and TAG against number of 
function evaluations  

Fig. 5. Cumulative success frequency of DE-
VTAG on each of the 9 problems 

Figure 4 shows the cumulative probability of success of the two successful 
treatments (for the setting where the population size is 250), plotted against the 
number of function evaluations used in the evolution. To help in understanding how 
incrementally DEVTAG solves the problems, figure 5 shows the cumulative 
probability of success of DEVTAG, for all 9 symbolic regession problems, for the 
particular case of population size 250. 

6   Discussion 

From table 2, it is clear that developmental evaluation is very effective at finding exact 
or near-exact solutions to the problem, over a wide range of population size settings (for 
population size 1000, the very short number of generations – 26 – gives DEVTAG no 
realistic chance of finding all nine functions, F1 through F9). At population size 250, 
DEVTAG’s probability of success was 33%, well above that achieved by the other 
treatments. It is also clear that this is an extremely difficult task for standard GP. 
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It is worth noting that DEVTAG gives us solutions to all the other eight functions, 
at no additional computational cost.  

From Figure 4, we see that it takes DEVTAG some time to find solutions at all, but 
once it does so, it rapidly finds more. We interpret this as DEVTAG needing a num-
ber of evaluations to get evolution running well at the lower levels, but once it does, 
solutions to F9 follow rapidly. We note that the stepped evaluation method of 
DEVTAG means that many of the higher functions do not need to be evaluated in the 
earlier generations, so that DEVTAG does not actually use its whole budget of 
evaluations. This is why the DEVTAG plot stops early in figure 4.   

In fact, the contrast in total computational cost is even greater than these figures 
suggest. TAG3P generates far larger individuals than DEVTAG. For example, the 
average size of the phenotype of the best-of-run individual for the TAG3P runs (i.e. 
what in Koza-style GP is known as the s-expression tree) with population 250 was 
533.2 nodes, while that for DEVTAG was 31.88 nodes Since the computational cost 
of evaluating an s-expression is generally proportionate to the number of nodes evalu-
ated, it is already clear that DEVTAG has much lower computational cost, per evalua-
tion, than TAG3P (or GP). Yet even so, DEVTAG has a further computational cost 
advantage. An individual is only ever fully evaluated if it has near-identical function 
values for the lower level functions with some individual that it meets in a tourna-
ment. Since this is an unusual occurrence in the dynamic phases of evolution, most 
individuals will only ever be partially evaluated, reducing the computational cost still 
further. These parsimony issues will be investigated in greater detail in later papers, 
where we hope to present detailed results on the number of nodes actually evaluated 
in a run. They also raise interesting issues regarding optimal tournament size and 
diversity mechanisms for DEVTAG, which we plan to investigate in future work.  

Figure 5 appears to confirm our interpretation, of gradually finding lower-level so-
lutions, with the solutions of higher complexity following fairly rapidly. More de-
tailed analyses, which we have insufficient room to present in detail here, show that 
DEVTAG virtually never finds a solution to function Fi without previously having 
found a solution to Fi-1. Further, there is a strong suggestion from the very closeness 
of the curves, that once DEVTAG has found building blocks for lower-level solu-
tions, they are quickly assembled to form higher-level solutions. We conjecture that 
DEVTAG is achieving this by replicating building blocks and creating modularity; 
testing this hypothesis primarily awaits our determining an adequate empirical test for 
modularity. At the very least, the results strongly support the view that incremental 
learning of a family of increasingly difficult functions has been demonstrated. 

7   Conclusions and Future Works 

The results of developmental evaluation using TAG representation clearly demon-
strate a form of problem-driven incremental learning. DEVTAG has been provided 
with a family of related problems of increasing difficulty, and it has proceeded to 
solve them incrementally. We believe this is a landmark in itself.  

The computational cost of the approach is also worth noting (though it is not the 
primary focus of this work), DEVTAG being much less expensive than the other 
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approaches in computational cost, as well as yielding much more (a family of func-
tions rather than just one) in return for that computational investment. 

Equally important, the results strongly suggest that developmental evaluation has 
promoted the evolution of modular structure, and this is certainly our impression on 
viewing the evolved genotypes. Confirming it is primarily a matter of developing an 
operational measure for modularity applicable to the TAG representation. Hornby 
[10] has recently considered this question, but his metrics are based on an assumption 
of explicit representation of modularity, hence it is not easy to see how to extend them 
to our work. Finding an appropriate metric for modularity and code re-use is our pri-
mary short-term goal. 

The work reported here is primarily a pilot study for a larger-scale approach with a 
more sophisticated developmental process. The TAG representation is crucial to this, 
because it removes any difficulty in ensuring that intermediate developmental stages 
can be evaluated. We plan to replace DEVTAG’s trivial developmental process with a 
more sophisticated approach based on a TAG analogue to L-systems. We aim to ap-
ply this system to a range of problems, and to analyse its behaviour, particularly in 
terms of the modularity and complexity of evolved solutions. 
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Abstract. We introduce a genetic programming (GP) approach for
evolving genetic networks that demonstrate desired dynamics when sim-
ulated as a discrete stochastic process. Our representation of genetic net-
works is based on a biochemical reaction model including key elements
such as transcription, translation and post-translational modifications.
The stochastic, reaction-based GP system is similar but not identical with
algorithmic chemistries. We evolved genetic networks with noisy oscilla-
tory dynamics. The results show the practicality of evolving particular dy-
namics in gene regulatory networks when modelled with intrinsic noise.

1 Introduction and Background

In recent years, there has been significant interest in synthetic biology and the
engineering of genetic circuits [1,2,3,4,5,6,7]. To this end, efforts have been made
to construct small constituent subnetworks or “modules” for general use in larger
genetic circuits [1,6]. Typically, synthetic genetic circuits [1] are either designed
by hand or by using the directed evolution paradigm in vivo [7]. This process
is both time–consuming and expensive. Alternatively, evolutionary approaches
in silico have shown that regulatory networks can be evolved to display cer-
tain dynamical characteristics (e .g. as bistable switches or oscillators) [5,8,9].
Essentially, these approaches differ in the specific formalism describing genetic
networks (e. g. piece–wise linear differential equations augmented by Boolean
functions [5], differential equations corresponding to deterministic rate equations
[8], artificial regulatory network model with dynamics derived from differential
equations [9]). In this contribution, we introduce a genetic programming (GP)
approach for evolving biochemical reaction networks based on simple enzyme
kinetics which demonstrate sustained (noisy) oscillations when simulated as dis-
crete stochastic models.

Stochasticity (or noise) is a fundamental phenomenon in many biological sys-
tems such as gene regulatory systems [10,11,12,13]. Although noise can adversely
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affect cell function, it is also considered a source of robustness and stability, signal
amplification, and selection of signalling pathways. Stochasticity originates from
the fact that the relative statistical uncertainty for the system state is inversely
proportional to the square root of the system size, i. e. the number of elements or
molecules. As a result, with smaller numbers of interacting molecules, fluctua-
tions become increasingly noticeable. Due to the uncertainty of knowing when a
reaction occurs and which reaction it might be, this form of stochasticity is also
called intrinsic stochasticity, as opposed to extrinsic stochasticity which results
from environmental effects. Here, only intrinsic stochasticity is considered.

In order to model intrinsic noise, we use the stochastic simulation algorithm
(SSA) of Gillespie [14]. The SSA represents a nonlinear discrete Markov process,
X(t), whose elements represent the number of molecules of molecular species in a
well-mixed system at time t (see Sec. 3). Since the dynamical behaviour of chem-
ical systems can be very different in the ODE regime (where we deal with very
large numbers of molecules neglecting the stochastic nature of their interactions)
from the SSA regime, it is important to see how certain dynamical behaviour can
evolve when there are only small numbers of certain key molecules. By taking
this stochastic nature into account, this can be considered to be a more realis-
tic scenario. Examples of different dynamical behaviours between deterministic
continuous and stochastic discrete versions of a model can be found in [6,15].
Specifically, the deterministic model of blood testosterone levels in [15] shows a
globally stable fixed point while its discrete stochastic counterpart shows sus-
tained oscillations. The repressilator designed in [6] behaves in an oscillatory
fashion in both regimes. However, stochastic simulations of this system exhibit
large variabilities in oscillations. These and other studies confirm the relevance
of considering stochasticity in modelling and analysis of biochemical systems.

In this contribution genetic networks are modelled as reaction systems. The
underlying model is explained in the following section.

2 The Reaction Model

In this reaction model inspired by the work of François and Hakim [8], a genetic
network is defined by a set of species (genes, mRNAs, proteins and complexes
such as gene-protein bindings or protein complexes) and elementary, irreversible
chemical reactions (first–order reactions, second–order reactions and homodimer
formations) governing their interactions. That is, each reaction has associated
reaction substrates, products and the specific rate constant. One or more elemen-
tary reactions are combined in master reactions which constitute the building
blocks of the genetic network and correspond to biologically meaningful processes
(cf. Table 1). The following seven biological (master) reactions are modelled:

1. Transcription and translation: a new gene, its mRNA, and the corresponding
protein are added to the genetic network model. Elementary reactions for
the basal transcription, translation, mRNA degradation, and protein degra-
dation are generated. Unlike the reaction model in [8], transcription and
translation are modelled as separate reactions.
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Table 1. Set of master reactions that are the building blocks of the genetic networks.
Lowercase letters followed by two underscores, such as a , represent genes with un-
bound regulatory sites. The corresponding mRNA is indicated such as in amRNA. The
associated capitalized letters (A,B, etc.) represent the proteins produced by the asso-
ciated genes. Protein complexes are represented using colons (i.e. a protein complex
composed of proteins A and B is represented by A:B). When a promoter P is bound
to an unbound gene a the binding is denoted aP . The case of a repressor R bound
to aP is denoted as aPR. Each reaction is specified by a reaction rate constant that
is ignored in this representation.

No. Master Reaction Single Reactions
1 Transcription a → a + amRNA

and translation amRNA → amRNA + A
amRNA → ∅

A → ∅
2 Regulation a + P → aP

aP → a + P
aP → aP + amRNA

aP + R → aPR
aPR → aP + R

3 Protein modification A → A∗

A∗ → ∅
4 Dimerization A + B → A:B

A:B → A + B

5 Partial degradation A:B → A

6 Catalytic degradation A + B → A

7 Partial cat. degradation AB + C → A

2. Regulation: transcriptional regulation is based on Goutsias’ simplified model
of transcriptional regulation of the bacteriophage λ repressor protein [16].
Each gene has two regulatory binding sites, R1 and R2. Binding of a tran-
scription factor at R1 activates transcription for every non-zero reaction rate,
whereas binding at R2 excludes any transcriptional activity and hence, re-
presses transcription. In addition, binding of a transcription factor at R2
requires R1 to be occupied by another factor.

3. Protein modification: a single protein or protein complex reacts leading to
an altered version of the original species (e.g. phosphorylation).

4. Dimerization: two proteins / protein complexes form a compound product.
5. Partial degradation: a protein complex degrades such that a constituent

protein is the degradation product.
6. Catalytic degradation: one protein / protein complex catalyses degradation

of another protein / protein complex.
7. Partial catalytic degradation: in the case of protein complexes, this reaction

is a catalytic degradation where one of the proteins (or sub–complexes) being
part of the complex is also the reaction product.
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3 Stochastic Simulation

To analyse and evaluate the dynamics of regulatory networks given in the reac-
tion model described above, we use Gillespie’s stochastic simulation algorithm
[14]. This is a method for exact simulation of biochemical systems that are as-
sumed to be homogeneous and well-mixed within a constant volume.

In the following we briefly describe the functioning of the SSA according to
[17]: Let the biochemical system consist of N ≥ 1 molecular species {S1, . . . , SN}
that chemically interact through M ≥ 1 reaction channels {R1, . . . , RM}. The
system state at time t is described by a vector X(t) ≡ (X1(t), . . . , XN (t))T

where Xi(t) is the number of molecules of species i at time t. Let X(t0) = X0
be the initial state. For each j = 1, . . . , M we can define the propensity function
aj for reaction Rj such that aj(X)dt is the probability that given X(t) = X ,
one reaction Rj will occur somewhere in the system in the next infinitesimal
time interval [t, t + dt). The state-change or stoichiometric vector νj specifies
the update of the system state when reaction Rj occurred. This is defined by νji

for i = 1, . . . , M , which is the change in the number of Si molecules produced
by one Rj reaction. Our SSA implementation simulates the time evolution of a
system according to the direct method : two independent samples r1 and r2 of
the uniform random variable U(0, 1) are drawn consecutively. The length of the
time interval [t, t + τ) is given by

τ =
1

a0(X(t))
ln(

1
r1

) ,

where

a0(X(t)) =
M∑

j=1

aj(X(t))

is the sum of all propensities. The specific reaction Rj occurring in [t, t + τ) is
determined by the index j satisfying

j−1∑
j′=1

aj′(X(t)) < r2a0(X(t)) ≤
j∑

j′=1

aj′ (X(t)) .

Table 2 specifies the propensity functions and non-zero entries of the state-
change vectors for the three elementary reaction types: the first and second order
reaction and homodimer formation (cf. Sec. 2). As the SSA becomes computa-
tionally intensive for systems with a large number of reaction channels and/or
fast reactions due to large reaction rates and/or large numbers of molecules,
we limit our model to small numbers of species with small population size. In
fact, we keep the number of genes/mRNA/protein creations fixed and limit the
number of reactions creating new species. In addition, in order to avoid “unend-
ing” calculations, the algorithm stops simulation if the reciprocal value of the
summed propensities (a0) falls below a predefined threshold (e. g. 10−8). Meth-
ods to accelerate the SSA while maintaining a reasonable accuracy such as the
τ -leap method, the midpoint-τ -leap method [17] or binomial leap methods [18]
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Table 2. For the three types of elementary reactions we determine the propensity
functions and non-zero entries of the state-change vectors for the present state X(t) =
X. cj is the reaction rate constant of the respective reaction.

Reaction Propensity Function Stoichiometric Coefficients
First order reaction
Sk

cj→ Sl aj = cj ∗ Xk νjk = −1, νjl = 1
Second order reaction
Sk + Sl

cj→ Sm aj = cj ∗ Xk ∗ Xl νjk = νjl = −1, νjm = 1
with Sk �= Sl

Homodimer formation
Sk + Sk

cj→ Sl aj = cj ∗ Xk ∗ (Xk − 1)/2 νjk = −2, νjl = 1

are not used as they allow all the reaction channels to fire within each time step
with a certain frequency.

4 The GP System

Here we use a GP–based algorithm to evolve genetic networks that obtain sus-
tained oscillations in an arbitrarily chosen protein or mRNA. Typical GP algo-
rithms use tree–based encodings [19,20]. This allows an individual solution to
be parsed into an equation where order of operations is important. However,
this encoding is inappropriate for this application since the order in which reac-
tions are triggered is chosen randomly. Instead, we choose a set–based encoding
scheme where each individual is represented by a set of biochemical reactions.
This reaction- or set-based GP approach is very similar (but not equivalent) to a
GP-approach based on algorithmic chemistries [21] which, unlike our approach
acts on instruction multisets and aims to create functioning algorithms.

Each individual initially starts with two gene (+ mRNA + protein) creation
reactions (reaction 1) and three other master reactions. This is not essential
for evolution but complies with our intention of studying small regulatory sys-
tems consisting of two genes. The individual master reactions (2 to 7) listed in
Section 2 are added to an individual through subsequent mutation steps. Re-
actions of type 1 cannot be added to genetic circuits during evolution. When
a reaction is added to the network this may introduce a new product. There-
fore, its list of species, i. e. proteins and bindings, is updated. Reaction rates
are uniformly drawn between 0 and 1 and reactants are randomly chosen from
the list of suitable reactants while avoiding the generation of duplicate reac-
tions. Other mutation operations involve deletions of reactions and modification
of reaction rates. The deletion of a reaction eventually includes the deletion
of the product introduced by this reaction and of all other reactions using the
product as a substrate. Reaction rates are modified by multiplication with a ran-
dom number from U [0, 2]. At the beginning of each evolutionary run, the initial
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concentrations of proteins and protein complexes are randomly chosen from
{1, 2, . . . , 10} and remain fixed for the entire evolution.

Recognizing sustained oscillations from noisy signals is the crucial point in our
evolution. The individual’s fitness is calculated by simulating the corresponding
reaction system over a predefined simulation time using the SSA. In a second
step, the resulting trajectory of length N for a specified species is assessed accord-
ing to its oscillatory behaviour. This is accomplished by applying the Fast Fourier
Transform. A rather simple and coarse indicator for oscillatory behaviour is the
ratio of the summed magnitude over the first N/2 + 1 Fourier values, Msum, to
the maximum magnitude within a predefined frequency range (e. g. 1/N . . . 1/4),
Mmax. In summary, the fitness value is calculated as 1−Mmax/Msum +1/Mmax.

Stochasticity in the outcome of the fitness evaluation is a problem that must
be dealt with: a trajectory (resulting from an SSA run) may show a certain
behaviour but another simulation may be different due to the different stochas-
tic path. To get a reliable result we perform several simulations. Calculating an
“average” trajectory from the resulting single trajectories and performing fitness
evaluation on this mean behaviour would be misleading since the average tra-
jectory might not match any single trajectory. Therefore, we calculate the mean
fitness over all SSA runs.

The selection method driving evolutionary dynamics is a simple (μ+μ) strat-
egy: each individual generates one offspring by performing two mutations on its
own copy; the best μ out of 2μ individuals build the new generation. The gener-
ational GP algorithm is implemented as a synchronous parallel GP using MPI
(message passing interface). Evolution is terminated if the number of generations
without fitness improvement exceeds a certain threshold. Table 3 lists the most
important parameters and their values used in evolutionary runs.

Table 3. These are some exemplary parameter settings of our GP system. With these
settings we evolved the genetic network shown in Fig. 1.

Parameter Value
no. of SSA runs (for each individual) 20
length of (SSA) simulation (in time units) 2048
GP termination threshold (in generations) 100
population size 100

max. no. of master reactions:
gene/mRNA/protein creation 2
regulation 2
protein modification 2
dimerization 3
partial degradation 2
catalytic degradation 2
partial catalytic degradation 2

mutation probabilities:
add reaction 0.1
delete reaction 0.1
modify rate constant 0.5
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5 Preliminary Results

Here we present two evolved genetic networks showing noisy oscillatory dynam-
ics. They are good representatives of other evolved networks featuring noisy
oscillatory behaviour resulting from a total of 50 GP runs. So far, we have not
focused on the performance of the evolution itself. However, the evolved so-
lutions were usually generated in the first 150 generations. Figure 1(a) shows
a regulatory genetic network that utilizes the regulation (master) reaction (cf.
Table 1). This exerts negative feedback on the transcription and translation of
gene a whenever protein A binds to the regulatory site R2, thus repressing the
transcription activated by the binding of dimer AB at R1. The Figures 2(a) and
2(b) show the resulting dynamics for a single simulation run.

A second genetic regulatory network is depicted in Figure 1(b). This network
generates a less regular form of oscillation in the concentration of protein A

gene a R2 R1

gene b R’2 R’1

a mRNA
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B
b mRNA
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part. deg.
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Fig. 1. Schematic representation of two evolved genetic networks exhibiting noisy os-
cillatory dynamics. (a) A core element in this genetic network that shows a regular,
sustained oscillation in protein A concentration (cf. Fig. 2(a)) is the negative autoregu-
lation of gene a. (b) This network comes without the regulation reaction but still shows
some form of oscillatory dynamics in the concentrations of protein A (cf. Fig. 2(c)).
Apparently, post-translational modifications are sufficient for generating pulsed signals.
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Fig. 2. Simulation results showing the concentration dynamics of protein A and a

mRNA of the genetic regulatory networks in Figure 1(a) (a,b) and 1(b) (c,d)

(cf. Figure 2(c)). It does so without utilizing any direct regulation reactions (cf.
Table 1) but by solely using post-translational modifications. A similar network
based only on post-translational reactions that exhibits a sustained oscillation
in the ODE model was also reported in [8]. In this model, however, one protein
complex is constantly produced without being consumed. The Figures 2(c) and
2(d) depict the concentration dynamics of protein A and a mRNA. The dynamics
of protein A are controlled by only a few other molecules that occasionally
initiate the production of protein A. This leads to a short burst in the molecular
concentration that appears quite regular. Note that all evolved networks were
simulated several times to verify sustained oscillatory behaviour. Moreover, the
corresponding ODE models of the networks in Figure 1 do not show oscillatory
behaviour which underpins the necessity of stochastic simulation.

6 Discussions and Suggestions for Future Work

In this contribution, we present a GP approach for evolving genetic regulatory
networks. Unlike others evolutionary approaches [5,8] we model those networks
as sets of elementary reactions based on simple enzyme kinetics and simulate
the network using Gillespie’s exact SSA. We showed that evolution of noisy
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oscillatory dynamics in genetic regulatory networks is practical also in the dis-
crete, stochastic regime. The networks found in [8] and the ones presented here
show that post-translational modifications can be crucial to network function. As
such, network function in this model cannot be understood by focusing only on
transcriptional interactions. This is an important consideration for researchers
in the bioinformatics community since such post-translational interactions are
often omitted from such models.

In our simulations, the number of genes was fixed but can be changed to
evolve specific dynamical behaviour in larger networks. For evolving desired dy-
namics in the concentrations of several species, the fitness function must be
redesigned. Using our fitness function for detecting oscillatory behaviour in one
protein showed success. Evolutions with more sophisticated fitness functions are
worthy of future consideration. At this point, parameter settings are heuristics.
Changing such settings might accelerate evolution. In order to obtain a better
understanding of the solution space and our representation, explorations on the
fitness landscape should be performed.

We also plan to evolve genetic regulatory networks with other types of dy-
namics. Since bistable behaviour can be observed in many biological systems,
evolution of genetic toggle switches under intrinsic noise would be of particular
interest [22]. An additional step would be to consider time delays. By using delay-
SSA (DSSA), a modified SSA algorithm incorporating delay effects [23,24], we
can model natural behaviour of processes such as transcription and translation
in a more detailed manner since they do not occur instantaneously [25].

This contribution shows how methods from evolutionary computation can
be used to achieve improved models of genetic regulatory networks, a better
understanding of regulation in cells, the finding of functional design principles
and the search for novel genetic networks.
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Abstract. Genetic Programming (GP) can be used to identify the non-
linear differential equations of dynamical systems. If, however, the fitness
function is chosen in a classical way, the optimization will not work very
well. In this article, we explain the reasons for the failure of the GP ap-
proach and present a solution strategy for improving performance. Using
more than one identification criterion (fitness function) and switching
based on the information content of the data enable standard GP algo-
rithms to find better solutions in shorter times. A computational example
illustrates that identification criteria switching has a bigger influence on
the results than the choice of the GP parameters has.

1 Introduction

System identification is about building models from experimental data [8], [11].
The system identification loop includes the design of experiments, data collec-
tion, definition of a model set, selection of a criterion of fit, and the calculation
and validation of the model. Prior knowledge can be incorporated to improve
the efficiency of each step. GP can be utilized for identifying models ranging
from black-box symbolic regression models up to strongly-typed, dimensionally
aware expressions [9].

Rodriguez-Vazquez et al. used GP to identify structure, model order, and
parameters of a NARMAX (Nonlinear AutoRegressive Moving Average with
eXogenous inputs) model [13]; Koza [10] showed that GP is able to find so-
lutions to ordinary differential equations (ODEs). Burgess [2] also investigated
approaches for ODE solutions. Gray et al. [6] used a GP approach to identify
a symbolic expression, which was part of the ODE system of a coupled water
tank system and which had physical significance. Babovic et al. [1] used GP for
ecological modeling. Time series approximation using GP generated ODEs was
another worthwhile application of Evolutionary Computation [3].

Our focus is the identification of mechanical systems, for example, aircrafts.
Mechanical systems are commonly and very efficiently represented by means of
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differential equations. However, available GP methodologies do not seem to be
sophisticated enough to handle complex problems with sufficient performance.
There are still problems and open questions: Babovic et al. [1] showed that for
complex systems a simple output error criterion does not allow the GP algorithm
to find a good solution. They could improve the performance by incorporating
a measure of mutual sensitivity.

In our approach, we generalize this idea: by applying different identification
criteria, performance can be increased dramatically even if the data which the
criteria work on are not available from the data sets and have to be approximated
from other data.

In section 2 we will give an overview of time-domain identification criteria.
Section 3 explains the reasons for GP’s failure and introduces a system identi-
fication concept for GP. In section 4 we will present conditions for automated
identification criterion switching. The computational example in section 5 will
serve as a proof of concept. A conclusion follows.

2 Time-Domain Identification Criteria

Consider the following 2nd order system:

ẏ = v

v̇ = a = f(y, v, u) , (1)

where ˙ means differentiation with respect to the time t. The variables y and v
are called altitude and velocity. The variable u(t) is a time-dependent control
variable (control input). The function f could also depend on t explicitly in the
more general case. Now we are seeking an approximation to the acceleration
a(y, v, u), called â, given a set of (noisy) measurement data.

Given some initial conditions (taken from the first records of the data sets)
and a specific control input u, a velocity v̂ and an altitude ŷ can be computed
using numerical ODE integration methods. Following the output error approach,
the model output is compared to the system’s output:∥∥∥∥ỹ −

∫∫
âdt2

∥∥∥∥ , (2)

where ỹ(ti) = y(ti) + ε(ti) is the discrete-time data used to run the identifi-
cation process (noisy (preprocessed) measurement data). As function norm the
summation over all squared errors for the whole data set or the mean square
error could be used. A disadvantage of the altitude output error approach is its
algorithmic complexity: there is a high computational cost for solving the ODE
numerically stable and with sufficient precision.

If velocity variables are used to compare model output with system data,
algorithmic complexity is reduced:∥∥∥∥ṽ −

∫
âdt

∥∥∥∥ , (3)
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where ṽ(ti) is either measured (and preprocessed) or calculated from ỹ(ti) by
means of numerical differentiation, denoted by Δỹ/Δt.

Following the equation error approach, the modeled acceleration, â, is directly
compared to the system’s acceleration values, ã(ti), which are measured or ap-
proximated (numerical differentiation of ṽ(ti)):

‖ã − â‖ . (4)

Using this identification criterion, no ODE solving is required at all.

3 Identification Concept for a Genetic Programming
System

In a GP system, two problems arise from using the output error approach: There
are high computational costs for solving the ODEs and there is high sensitivity of
the phenotype to modifications in the genotype. As an example, consider an ac-
celeration a that leads to a trajectory y. Let D be a simple constant disturbance.
The resulting trajectory is∫∫

(a + D)dt2 = y +
∫∫

Ddt2 = y +
Dt2

2
. (5)

Therefore, small changes in the acceleration may lead to big changes in the
trajectories, especially if time periods are long. Oscillations, on the other hand,
are filtered. The search space topology depends on the chosen identification
criterion. A good evolutionary step towards a good –but not yet perfect– model
structure may lead to a bad fitness value and is therefore eliminated from the
population with high probability.

This problem can be avoided by using the equation error approach. If data
(in our case: acceleration data) is not available, it can be produced by numerical
differentiation of velocity or altitude data. In this case, systematic errors are
induced because of the finite time intervals. Noise may be amplified and signal-
to-noise ratio may be reduced, depending on the chosen differentiation method.
As a result, the signal contains less information than the original (for example,
altitude) signal. A second derivative decreases the information content further.

3.1 Reasoning for Switching the Identification Criterion

Using the results from above, a strategy for choosing the most appropriate identi-
fication criterion can be formulated: Because of reduced computational complex-
ity, the equation error criterion is preferred to the velocity output criterion, which
itself is preferred to the altitude (or trajectory) output error criterion. When the
information content of the data used with a certain criterion is exploited and fur-
ther training would only lead to approximating noise (over-fitting), the criterion
needs to be changed. The system identification algorithm has to switch to a cri-
terion which works on data with better signal-to-noise ratio (higher information
content), if such data is available.
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3.2 Algorithm

Based on the argumentation, the basic concept for the algorithmic structure
looks like the following:

1. Select criterion/data with least computational costs with respect to opti-
mization (algorithmic complexity)

2. Use it for model building as long as there is useful information content
3. If stopping criterion is fulfilled: stop identification procedure
4. If not: Select other criterion/data with more information content and lowest

possible algorithmic complexity
5. Continue with step 2.

4 The Switching Criterion

In this paper we present a switching criterion based on an approach adopted
from neural network learning theory: the early stopping method [7], [12].

Early stopping can be applied when iterative optimization methods are used
to estimate models from noisy data. Instead of performing training (or evolution)
until convergence, training is stopped before over-fitting occurs. A validation set
is used to monitor the current solution’s (or population’s) generalization capabil-
ity. A performance drop on the validation set indicates a drop in generalization
and the possible onset of over-fitting.

During GP evolution the following statistical cross-validation data is used:
average validation fitness, population’s best validation fitness, and the validation
fitness of the best (with respect to the training fitness) individual. They will be
referred to as validation variables in the following. An indicator for stagnation
of the evolution (with respect to the expected test performance) is computed
using the following approach, which is applied from an early generation on:

1. Calculate the slopes of the linear regressions based on the five most recent
values of each of the validation variables

2. If all (three) slopes are smaller than or equal to zero, increase the indication
counter

3. When the indication counter reaches the value two, switch to a criterion that
uses more informative data

These rules were derived from data analysis of GP runs with different real-
izations of noise and different GP parameters. The use of regression is necessary
since the validation variables tend to oscillate during evolution.

5 Computational Example

5.1 The Parachute Model

For creating measurement date, we consider a simple model of a sky diver
with a parachute falling through the air. The force of gravity accelerates the
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parachute towards earth. On the other hand, air resistance causes a drag force
acting in the opposite direction of the velocity. The drag force is assumed
proportional to the parachutes squared speed. The size of this drag force can
be controlled using a control input u, which can be thought of changing the
parachute’s cross section area A. The considered differential equation is the
following:

ẏ = v

v̇ = a = −g +
1

2m
cwρuAv2 , (6)

where y is the object’s altitude and v its velocity; m is the mass of the sky
diver and parachute, g is the acceleration of gravity, ρ the air’s density, cw is
the shape dependent drag coefficient, A is the cross-section area normal to the
velocity, and v the parachute’s velocity. The equation is valid as long as v is
negative (parachute moves towards earth).

5.2 Training, Validation, and Test Sets

Given a set of time-varying input signals u(ti) the response of the parachute
model (altitude y(ti)) is calculated using a forth order Runge-Kutta method
with 20 iterations per data interval. For training and validation sets Gaussian
white noise is added to the altitude values, see Table 1. Altitude data is dif-
ferentiated numerically using quadratic regression of five data points (smoothed
local differentiation) to generate approximated velocity information. Numerical
differentiation of the velocity gives an approximation of the acceleration acting
on the sky diver. The model parameters used are: m = 80 kg, g = 9.81 m/s2,
ρ = 1 kg/m3, A = 25 m2, cw = 0.34. Fig. 1 shows the resulting GP input data.

Table 1. Standard errors (in m) of the stationary Gaussian white noise (zero mean)
used to generate the training and validation cases

Signal Standard error (σ) of noise

Training case C, altitude 0.01
Training case D, altitude 0.1
Training case F, altitude 0.08
Validation case A, altitude 0.01
Validation case G, altitude 0.1

5.3 Experiments and Experimental Settings

Six experiments are performed with 30 runs each. Two experiments use the
altitude output criterion; two experiments use the acceleration equation error
approach, and two experiments use the criterion switching approach. Accelera-
tion equation error, velocity output error, and altitude output error criteria are
utilized for the switching runs. The GP system is run with two different GP
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Fig. 1. The GP training set consists of three cases C, D, and F (from left to right),
which depend on the control input u(t) (first row). There is noise added to the system’s
outputs (solid lines) to generate altitude values ỹ(t)(dotted lines, second row). Velocities
ṽ(t)(third row) and accelerations ã(t)(forth row) are computed from the noisy altitude
by smoothed local differentiation.

Table 2. Identification criteria used for the computational experiments

Experiments Identification Criterion

Altitude ỹ − âdt2

Acceleration Δ2ỹ
Δt2

− â

Switching all identification criteria

parameter sets (see parameters section below). Whenever ODE integration is
necessary, a forth order Runge-Kutta is used (10 iterations/interval). See sec-
tion 4 for details about the applied switching criterion. Table 2 gives an overview
of the utilized identification criteria.

Genetic Programming, Parameter Settings, and Fitness Function. For
running the experiments, Open BEAGLE [4], [5] –a C++ Evolutionary Com-
putation (EC) framework– is used. A tree representation is used to encode
forces. Acceleration values are calculated by dividing the forces by the mass.
Any experiment consists of 30 runs with different random number seed val-
ues. The major GP settings are shown in Table 3. Tournament selection (seven
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Table 3. Overview of the major Genetic Programming settings used for the
experiments

Name of the GP parameter Configuration 1 Configuration 2

Function set +, -, * +, -, *
Terminal set u, x, v, m, g, u, x, v, m, g,

A, cw, 1/2 A, cw, 1/2
Population size 1000 7750
Maximum allowed depth of trees 8 10
Maximum depth for newly initialized trees 5 5
Minimum depth for newly initialized trees 1 1
Individual crossover probability 0.9 0.85
Reproduction probability 0.1 0.1
Standard mutation probability 0 0.325
Swap mutation probability 0.1 0.1
Swap subtree mutation probability 0.05 0.05
Shrink mutation probability 0.05 0.05

individuals) was used as the selection operator. The normalized mean square
error over the training set is used as fitness measure.

5.4 Results

Fig. 2 shows the performance of the population’s best individuals on the test
set. The fitness values of the altitude runs increase very slowly. Acceleration
runs improve very fast in the beginning but stagnate afterwards because of low
information content in the training data. The switching concept outperforms

0
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0,5

0,6

0 1000 2000 3000 4000 5000 6000

TotalEvaluatedNodes / 1e6

altitude 1 switching 1 acceleration 1

Fig. 2. Test performance: Average of the population’s maximum test fitness values
over 30 runs using GP Configuration 1
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Table 4. Mean values, standard errors, and significance measures for altitude runs and
switching runs, configuration 1

Evaluated nodes / 1e6 2,000 10,000 80,000

Altitude 1 average 0.184 0.206 0.276
Altitude 1 std.-error 0.019 0.096 0.191
Switch 1 average 0.399 0.536 0.669
Switch 1 std.-error 0.142 0.168 0.161
T-test p-value 3.20E-09 3.70E-12 7.90E-12

Table 5. Mean values, standard errors, and significance measures for acceleration runs
and switching runs, configuration 1

Evaluated nodes / 1e6 2,000 10,000 17,000

Acceleration 1 average 0.295 0.301 0.299
Acceleration 1 std.-error 0.040 0.046 0.048
Switch 1 average 0.399 0.536 0.599
Switch 1 std.-error 0.142 0.168 0.147
T-test p-value 3.19E-04 1.34E-08 2.23E-12
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Fig. 3. Test performance: Average of the population’s maximum test fitness values
over 30 runs using GP Configuration 2. Above 2000e6 evaluated nodes, all differences
(t-test) are significant.

altitude-only and acceleration-only criteria significantly. Applying GP Configu-
ration 2, similar results were obtained; see Fig. 3 for a plot.

6 Conclusion

In this article we introduced the idea of criteria switching for (evolutionary)
system identification. For the automated switching procedure the necessary
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switching conditions were developed. It was shown that the application of the
criterion switching influenced the system identification performance significantly.
Although the applied switching condition was rather simple, the approach led
to great results.

In the computational example, performance on the validation set was mea-
sured every generation. The frequency of these evaluations could be reduced to
lower computation time. Evaluation speed could be optimized further using so-
phisticated switching criteria. For example, characteristics of the training fitness
could be considered and specialized time series methods could be applied. We
currently investigate conditions which use the validation value of the best (with
respect to the training fitness) individual only and which do not need validation
information of the whole population.

If prior knowledge is available about the accuracy of the signals (information
content, systematic and statistical errors ...), this information can be used for
defining switching events. In these cases, no validation computations would be
necessary at all.

The better the quality of the acceleration signal is, the longer can the ac-
celeration equation error criterion be used. Better differentiation methods (e.g.,
taking the control signal into account) and signal filtering could improve the
approximation of unknown identification signals a lot and may be investigated
separately in future.

This approach can be applied not only to mechanical systems but to any
application that requires integrating or ODE solving.
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Abstract. Genetic Programming (GP) [1] often uses a tree form of a
graph to represent solutions. An extension to this representation, Auto-
matically Defined Functions (ADFs) [1] is to allow the ability to express
modules. In [2] we proved that the complexity of a function is indepen-
dent of the primitive set (function set and terminal set) if the represen-
tation has the ability to express modules. This is essentially due to the
fact that if a representation can express modules, then it can effectively
define its own primitives at a constant cost. This is reminiscent of the
result that the complexity of a bit string is independent of the choice of
Universal Turing Machine (UTM) (within an additive constant) [3], the
constant depending on the UTM but not on the function.

The representations typically used in GP are not capable of expressing
recursion, however a few researchers have introduced recursion into their
representations. These representations are then capable of expressing a
wider classes of functions, for example the primitive recursive functions
(PRFs). We prove that given two representations which express the PRFs
(and only the PRFs), the complexity of a function with respect to either
of these representations is invariant within an additive constant. This is
in the same vein as the proof of the invariants of Kolmogorov complexity
[3] and the proof in [2].

1 Introduction

In much of Machine Learning, we aim to learn the underlying function given
some sampled data points in an attempt to generalise from these observations in
order to make predictions about novel data points [1, 3, 4]. If there are regularities
in the data, then it can be compressed (i.e. represented in less space than the
raw data). Some researchers equate compressing observed data with learning the
underlying function [4].

To achieve function regression we need a representation to express the target
function (e.g. a neural network or a polynomial). The choice of model is impor-
tant and is guided by heuristics like Occam’s Razor and minimum description
length [3, 4]. Once we have picked a representation, the parameters of the model
need to be found (i.e. the weights of the neural network or the coefficients of the
polynomial). In some cases this can be done with analytic techniques, but where
computationally tractable methods do not exist a different approach is needed.

P. Collet et al. (Eds.): EuroGP 2006, LNCS 3905, pp. 310–319, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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GP is a method of searching the space of a given type of representation,
where solutions are represented typically as tree structures (though other data
structures have been used e.g. graphs, forests). For example, we could choose as
our function set {x, x2, ...xn}. Alternatively we could choose

{sin(x), sin(2x), ...sin(nx), ... cos(x), cos(2x), ...cos(nx)}.

The choice of function set can prove critical to the performance of GP. We now
consider expressing an arbitrary function using different function sets.

Polynomials. Given a set of data points we can represent them with a poly-
nomial [5]. A polynomial of degree n is defined as fpoly

n (x) = a0x
0 + a1x

1 + ... +
an−1x

n−1 + anxn where x is the variable and ais are coefficients, some of which
may be zero. Ideally the polynomial will be a close fit to the data, and provide a
good estimate of unseen data points, i.e. it provides close functional resemblance
to the process which produced the data.

There are two extremes we need to be aware of when fitting data; under-fitting
and over-fitting [4, 5]. If the polynomial is too simple, it will fail to capture the
underlying function. Alternatively if the polynomial is too flexible, it can over-
fit the data and learn the noise. A polynomial with n degrees of freedom can
pass exactly through all n data points. Generally, the more degrees of freedom
a polynomial has, the closer it can potentially fit the data.

Once we have decided the type of polynomial (e.g. a0x
0 + a1x

1), we can then
calculate the values for a0 and a1, which best fit the data. It is an open question
as to how to decide which model to fit the data. For example, how can we decide
if a0x

0 + a1x
1 + a2x

2 is a better model than a10x
10 for some given data?

Fourier series. Instead of choosing to represent our target function using poly-
nomials, we could use a different basis. For example, one of the most common
is to use trigonometric functions. Under certain conditions one can approximate
a function f(x) (we assume a period of 2 π) f trig

n (x) = a0/2 + a1sin(1x) +
b1cos(1x)+ ...+ ansin(nx)+ bncos(nx) where sin and cos are the trigonometric
functions, x is the variable and ai and bi are coefficients. This sum is referred to
as a trigonometric polynomial of degree n.

The problem is the following. If we are trying to approximate a function f(x),
it may be very easy to describe using fpoly(x) in that it only requires a few
coefficients. However if we use f trig(x), we may require many more coefficients,
and the number of coefficients may affect how easy it is to learn the function.

For example representing the function sin only requires one coefficient if we
are using a trigonometric basis. However, if we are using a polynomial basis this
would require many terms depending on how closely we wanted to approximate
the sin function. Conversely, there are functions which are easy to express using
a polynomial basis, but difficult using a trigonometric basis.

The intuition behind the idea in this paper can be expressed with the following
example. We may have a target function f we would like to approximate, f(x) =
45sin(x) + 67cos(x). If we are using a trigonometric basis, this function is easy
to express. However, if we wanted to express this function using a polynomial
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basis, this would require an infinite number of terms. We could begin writing
this; f(x) = 45(x − x3/3! + x5/5!...) + 67(1 − x2/2! + x4/4!...). If we are using
standard tree based GP, we have no way to express this sort of regularity. In
order to express this recursion is needed. We can express this as;

f(x) = 45s(x) + 67c(x) where

s(x) =
n∑

i=0

x2i+1/(2i + 1)! and c(x) =
n∑

i=0

x2i/(2i)!

Now we can express the function f in a finite sized expression in terms of the
polynomial basis, now we have the power to express iteration. In this way, any
regularity that can be expressed in one basis is also expressible with another
basis at constant cost of defining the functions which define the transformation
from one basis to the other.

The outline of the remainder of this paper is as follows. In section 2 we
review the literature regarding evolution of representations involving recursion.
In section 3 we define the partial recursive functions and the PRFs. In section 4
we give some preliminary definitions used in section 5. We end the paper with a
discussion and summary in sections 6 and 7.

2 Evolving Recursive Representations

In this section we review a number of papers which have used representations
which use recursion. Some of the representations are equivalent to the PRFs and
some are equivalent to the partial recursive functions.

Cramer [6], evolved a program to multiply two integers together. Initially he
describes a language, PL, which consists of the following instruction set; INC
v increments a variable v by 1. ZERO v sets a var v to zero. LOOP v STAT
performs the statement STAT v times. GOTO LAB jumps to the statement
labelled LAB. While PL is Turing Equivalent, he is interested in a subset of PL,
PL − {GOTO} (i.e. PL without the GOTO instruction). This new language,
while no longer Turing Equivalent, is equivalent to the PRFs. He makes the
point that programs written in this language are guaranteed to halt.

Brave [7] evolves programs with ADFs and a restricted form of recursion. He
investigates the scalability of GP with programs with and without recursions
and ADFs. He shows that as the size of the problem increases, the effort to find
a solution with ADFs with recursion remains constant. Whereas basic GP scales
linearly. We comment on this in section 6.

Koza [8] explored iteration with the Do Until DU operator. This operator
takes two arguments; the first specifies what is to be iterated over, and the
second specifies a condition which when satisfied will terminate the operation.
He tackled a block stacking problem.

Yu [9] evolves modular recursive programs using a novel approach. She recog-
nises the fact that, while recursion is a powerful reuse mechanism, it can loop
forever and care must be taken (i.e. evolution may not give a base case which
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causes termination). She introduces implicit recursion where the terminating
condition is incorporated into the expression so the computation will always
terminate. She tackles the even-n-party problem and finds general solutions.

Spector [10] introduces a new language and acknowledges that ”it therefore
usually makes sense to collect repeated code into subroutines that can be defined
once and then used many times”. A maximum runtime is placed on a computa-
tion to avoid the problem of non-terminating recursive code. Wong et. al [11],
Yu [9] and Spector et. al [10] all evolve solutions to the even-n-parity problem.

Given a function represented by any of the representations described in section
2, we can guarantee that the complexity differs by at most a constant which
depends on the representation but not on the function.

Work has also been done evolving representation which can express the partial
recursive functions [12, 13]. See [14] for more references. One of the central themes
of these works is the halting problem. We cannot tell ahead if a computation
will halt or not. In all of these works an upper limit on the computation time is
enforced, and if the program has not halted in this time, it is terminated.

3 Recursive Functions

It is constructive to consider recursive functions as this is the class of computable
functions and therefore the class of functions which we can potentially evolve.
An understanding of the theory of recursive functions may help us understand
the evolution of Turing Equivalent representations better.

Functions made only from the basic operations and the operations of composi-
tion and recursion are called total recursive functions (i.e. they are total functions
and therefore halt). Yu [9] and Cramer [6] evolved total recursive functions, (see
section 2).

There are many models of computation which have been shown to be equiv-
alent to Turing Machines. For example, see Cutland [15] (chapter 3, section 1)
who lists 7 different approaches, including partial recursive functions, lambda de-
finable functions and unlimited register machines. All of these models compute
the class of functions called the partial recursive functions. Recursive functions
can be expressed using three basic operations and three meta functions. The
three basic function are successor (also known as increment), zero (also known
as clear), and projection. The three meta functions are composition, recursion
and minimisation, which can be used to construct new functions from previously
defined functions. Functions made only from the basic operations of composition
and recursion are called PRFs. A function is a total function if it has a defined
output for all of its inputs. A function is a partial function if it has an undefined
output for any of its inputs.

The basic operations are simple and consist of the following three operations:
successor, zero and projection. The successor operation maps a number n to
n+1 i.e. S(n) = n+1. The zero operation maps a number n to 0, i.e. Z(n) = 0.
The projection is slightly different; given a list of n numbers and an integer i,
we return the ith number in the list i.e. Pi(x1, ..., xn) = xi for 1 ≤ i ≤ n.
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Composition, also known as substitution, is a way of creating new functions.
Given functions f(x) and g(x), a new function h(x) can be constructed by com-
position h(x) = f(g(x)). This is the operation GP uses to build up more com-
plicated functions from the function and terminal set. The composition of total
functions results in a total function, i.e. if f and g are total then h is total.

In GP terminology, composition corresponds to ADFs [1]. We must be careful
to distinguish between the situation in standard GP, which also uses composition,
but each time a function h(x) = f(g(x)) is needed it must be defined again.
Whereas, if ADFs are available h(x) can be defined once and called when needed.

Given functions f(x) and g(x, y, z), a new function h(x, y) can be constructed
as follows; h(x, 0) = f(x) (base case) and h(x, y + 1) = g(x, y, h(x, y)) (recursive
case). The recursion of total functions results in a total function (i.e. if f and g
are total then h is total). Hence given an algorithm written with the structure
defined above, it is guaranteed to halt.

Given a function f(x, y), the function μy(f(x, y) = 0) is defined as the least
y such that f(x, z) is defined for all z ≤ y, and f(x, y) = 0. Otherwise, if there
is no such y it is undefined. It is due to the operation of minimisation that we
encounter partial functions which correspond to non terminating programs.

4 Preliminary Definitions

In this section we give a number of definitions which are similar in nature to
those in [2]. These definitions are needed for the proof in the following section.

Definition 1 (terminal set). The terminal set t is the set of inputs to the
program. These are typically problem variables and/or constants.

Definition 2 (function set). The function set f is the basic functions GP uses
to construct more complex functions.

In this set we assume two meta functions are present in the function set. The
first is composition, C, the second is recursion, R. These are defined in section 3.
These may be achieved by different implementations. There may be more than
one of each of these primitives in a given primitive set, but we assume at least
one of each. We also assume the base functions (or their equivalent) are present.

Definition 3 (primitive set). The primitive set p is the union of the function
set f and the terminal set f , i.e p = t ∪ f .

These definitions are similar to those in [1] (section 5.1). The arity of a primitive
is the number of inputs it takes. The only distinction between the function set
and the terminal set is that all terminals have zero arity and functions have a
non-zero arity. We will assume that the primitive sets can express the PRF class
of functions.

Definition 4 (size). The size of the instance of a PRF representation is the
number of nodes it contains.
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Definition 5 (equally expressive). Two primitive sets are equally expressive
if they can express the same set of functions in finite size.

Thus given two primitive sets p1 and p2, if each member of p1 can be expressed
in terms of p2 and vice versa, then the two sets are equally expressive. In this
paper we are only interested in primitive sets which express the PRFs.

While this definition tells us if two primitive sets are equally expressive or not,
we need to know how to construct a given function in a new primitive set given
the function expressed in an old primitive set. This is done using a dictionary.

Definition 6 (dictionary). A dictionary is the collection of PRFs which ex-
press each member of p2 in terms of p1. The size of the dictionary must be
finite.

In other words, each member of the set p1 can be expressed in terms of p2. The
existence of the pair of dictionaries Dp1,p2 and Dp2,p1 is a necessary and sufficient
condition to imply that the primitive sets p1 and p2 are equally expressive.

Definition 7 (complexity). The complexity of a function with respect to a
PRF representation, is the size of the smallest PRF which can represent the
function. The complexity of a function f with respect to a PRF primitive set p,
is written as Cp(f).

Definition 8 (complexity of a dictionary). The complexity of a dictionary
Dp1,p2 is the size of the smallest dictionary which expresses the set of functions
p2 in terms of a PRF using primitive set p1. We write Kp1,p2 for the complexity
of dictionary Dp1,p2. In general Kp1,p2 �= Kp2,p1.

Definition 9 (translate primitive set). Given a function expressed in terms
of one primitive set p1, we can express the same function in terms of a second
primitive set p2. The process of re-expressing the function in terms of p2 is called
the translation of primitive set from p1 to p2.

5 Theorems and Proofs

In this section we present 3 theorems regarding the complexity of a function
when expressed using a PRF representation. We prove that the complexity of
a set of functions is invariant under translation of primitive set, if we are using
PRFs as our representation and the two primitive sets are equally expressive.
We then go onto prove the tightest upper and lower bounds on the complexity
of a function when expressed using a different primitive set.

Theorem 1 (complexity). The complexity of a function under the PRF repre-
sentation is invariant under translation of primitive set, within a constant Kp1,p2
(the complexity of the dictionary Dp1,p2) provided the primitive sets are equally
expressive.

Cp2(f) ≤ Cp1(f) + Kp1,p2
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Proof. Assume we have two primitive sets p1 = {f1, f2, ...fn, C1, R1} and p2 =
{g1, g2, ...gm, C2, R2}. where C1 and C2 are methods of expressing composition
and R1 and R2 are methods of expressing recursion. Assuming p1 and p2 are
equally expressive (i.e. they can express the PRF class of functions), the dic-
tionaries Dp1,p2 and Dp2,p1 both exist. We can simulate the functions of one
primitive set with the functions from the other primitive set. Thus, the set of
functions {fi} (where i = 1 to n) can each be written in terms of primitive set
p2, and the set of functions {gj} (where j = 1 to m) can each be written in terms
of primitive set p1. We assume the sets of functions {fi} and {gj} are expressible
as PRFs. As long as composition is a member of both of the primitive sets we
can construct a primitive and refer to it when needed.

There are different ways of expressing iteration/recursion. For example, in p1,
C1(n, f) could be the primitive for(int i = 0; i < n; i++) {f} while in p2,
C2(n, f) could be the primitive do n times {f} And these can be shown to be
equally expressive. Koza [8] uses a Do Until operator (DU (work) (predicate)).

In each of these primitive sets p1 and p2 we have only included one method of
recursion, and one for composition. Other recursive methods could be included,
but as long as we have one method of expressing recursion we can simulate other
methods of expressing recursion at constant cost.

Given theorem 1, we can now ask ourselves if a smaller bound exists. We now
show that a smaller constant does not exist.

Theorem 2 (tightest bound). Kp1,p2 is the smallest bound we can place on
the constant in theorem 1.

Proof. Some functions will not depend on all of the primitives in a given primitive
set, therefore these primitives do not need to be translated and do not need to
be included in the dictionary. However in the worst cases, all of the primitives
are required to be translated and the complete dictionary is needed. Therefore
the smallest size of the bound is the complexity of the dictionary (i.e. the size
of the smallest dictionary which translates all of the primitives).

Theorem 3 (lower bound). Theorem 1 gives an upper bound. We can rear-
range this equation to give a lower bound on complexity

Cp2(f) ≥ Cp1(f) − Kp2,p1

Proof. Consider the above equation (eq. 1). Consider the translation from
primitive set p2 to primitive set p1 which gives the equation

Cp1(f) ≤ Cp2(f) + Kp2,p1

then rearrange the equation

Cp1(f) − Kp2,p1 ≤ Cp2(f)

We can also say this is the tightest lower bound by an identical argument to
that above. We can combine the above results into a single expression

Cp1(f) − Kp2,p1 ≤ Cp2(f) ≤ Cp1(f) + Kp1,p2

and state that these bounds are the tightest obtainable.
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6 Discussion

There are a number of interesting properties we can point out regarding PRFs.
Let us take as an example the problem of expressing the solution to the even-n-
parity problem as an illustration. A number of researchers have used this as a
problem to test their systems [9, 10, 11]. If we use a traditional GP representation,
each of the problem variables have to be addressed explicitly in the solution, i.e.
v1, v2, ..., vn, and these would appear as leaves on the tree of our solution. We
would have to know at the start of the GP run how many variables we are dealing
with. There is no way of addressing a general variable, i.e. the ith variable vi. If,
however, we have a system which can address this issue then we have the ability
to express a general solution as we have in [9, 10, 11].

Another important point can also be addressed using the even-n-parity prob-
lem as an illustration. Imagine we were not interested in the general solution,
but wanted to find the solution to the even-1000-parity problem. We could set
up out GP system to learn to solve the problem with 1000 explicitly labelled
inputs, i.e. v1, v2, ..., v1000. Alternatively, we could learn the even-n-parity and
learn on smaller instances of the problem e.g. even-2-parity and even-3-parity.
This is precisely what Yu does, and manages to evolve a general solution using
all 22+23 test cases. Importantly, as Brave [7] points out, the minimal ’structural
complexity’ of solutions does not increase with problem size. This approach of
evolving general solutions to a number of small sized instances of a problem in
order to solve large instances of a problem is widely applicable (e.g. to image
recognition problems or games).

In [2, 14] we proved that the complexity of a function is independent (within
an additive constant) of the function set and terminal set provided the sets are
equally expressive and the representation is capable of expressing modules (i.e.
composition or ADFs). The constant does not depend on the function being ex-
pressed, only the primitive set being used. In [3] it is proved that the complexity
of a bit string is invariant with respect to the model of computation (e.g an
arbitrary UTM which is equivalent to the partial recursive functions). The com-
plexity of a function and a bit string are analogous as a function is ultimately
stored as a bit string in the computers memory. It therefore seems reasonable
that a similar result should hold for PRFs. Indeed, in this paper we have proved
that the complexity of a function is independent (within an additive constant) of
the primitive set, provided it can express exactly the class of PRFs. Given these
three results it would appear that if two representations are equally expressive,
and have the ability to express composition (i.e. reuse of component parts), then
this is a necessary and sufficient condition for the complexity of a function to be
invariant, within an additive constant.

Brave [7] makes the point that small variations is the structure of a recursive
program can lead to large changes in functionality and thus fitness. The fitness
of an individual does not necessary reflect its proximity to a global solution.
Teller [16] (appendix) also comments that the more expressive a representation
is, in general, the more difficult it is to learn using that representation.
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While the class of PRF is a proper subset of the class of computable func-
tions (i.e. the partial recursive functions), this is still an important class. To
quote Hartley [17] (page 8), “Virtually all of algorithmic functions of ordinary
mathematics can be shown to be primitive recursive”. Whether it is also true of
the problems we are likely to encounter in the domain of AI, this is not clear.

The complexity of a function with respect to a UTM is in general not com-
putable. As the class of PRFs contain only total function, the complexity of a
function with respect to a given representation of PRFs is computable and this
may be helpful when constructing learning algorithms.

7 Summary

The PRFs is an important class of functions mathematically. Just as there
are different representations of the partial recursive functions (e.g. Turing Ma-
chines and Unlimited Register Machines) there are many ways of representing
the PRFs. Kolmogorov complexity [3] of a function is the minimum amount of
computer memory needed to express the function. The Kolmogorov complexity
of a function is independent of the model of computation used to express it.
In this paper we have proved that if a function is a PRF, then the minimum
amount of space needed to represent it is independent of the representation and
depends only on the function. This is essentially due to the fact that the process
of composition allows a representation to define arbitrary PRFs once and refer
to them as needed. This result is analogous to that of Kolmogorov [3].

While a number of systems equivalent to PRFs have been evolved (see
section 2), we could evolved expressions directly in the mathematical notation
(see section 3). We question the utility of inventing new representations for the
purpose of evolution in light of the fact that whatever new representation we care
to produce, we can guarantee that the complexity of any function will be bound
by a constant which is independent of the representation and only dependent on
the function.
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Abstract. This paper investigates the locality of the genotype-
phenotype mapping (representation) used in grammatical evolution
(GE). The results show that the representation used in GE has prob-
lems with locality as many neighboring genotypes do not correspond to
neighboring phenotypes. Experiments with a simple local search strat-
egy reveal that the GE representation leads to lower performance for
mutation-based search approaches in comparison to standard GP repre-
sentations. The results suggest that locality issues should be considered
for further development of the representation used in GE.

1 Introduction

Grammatical Evolution (GE) [1] is a variant of Genetic Programming (GP) [2]
that can evolve complete programs in an arbitrary language using a variable-
length binary string. In GE, phenotypic expressions are created from binary
genotypes by using a complex representation (genotype-phenotype mapping).
The representation selects production rules in a Backus-Naur form grammar and
thereby creates a phenotype. GE approaches have been applied to test problems
and real-world applications and good performance has been reported [1, 3, 4].

The locality of a genotype-phenotype mapping describes how well genotypic
neighbors correspond to phenotypic neighbors. Previous work has indicated that
a high locality of representations is necessary for efficient evolutionary search
[5, 6, 7, 8, 9]. Until now locality has mainly been used in the context of standard
genetic algorithms to explain performance differences.

The purpose of this paper is to investigate the locality of the genotype-
phenotype mapping used in GE. The design of high-locality genotype-phenotype
encodings is important to ensure high GE performance. We present experiments
for standard GE test problems that show that the mapping used in GE has
low locality leading to low performance of standard mutation operators. The
study at hand is an example of how basic GA design principles can be applied
to explain performance differences between different GP approaches and demon-
strates current challenges in the design of GE-based systems.

2 Representations, Locality and Mutation Operators

When using a representation, every optimization problem f can be decomposed
into a genotype-phenotype mapping fg (representation), and a phenotype-fitness
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mapping fp (problem) [10]. Φg is the genotypic search space where the search
operators are applied and Φp is the phenotypic search space. Consequently, we
distinguish between phenotypes xp ∈ Φp and genotypes xg ∈ Φg.

2.1 Metrics

When using search algorithms, a metric has to be defined on the search space
Φ. Based on the metric, the distance dxa,xb

between two individuals xa ∈ Φ
and xb ∈ Φ describes how different the two individuals are. The larger the
distance, the more different two individuals are. Two individuals are neighbors
if the distance between them is minimal.

If we use a representation fg there are two different search spaces, Φg and Φp.
Therefore, different metrics can be used for Φg and Φp. In general, the metric
used on Φp is determined by the specific problem that should be solved. For GP
approaches, common phenotypes are tree structures that describe programs or
expressions and possible distances are tree edit distances. In contrast, the metric
defined on Φg is not given a priori. Different GP variants use different types of
genotypes. For example, GE uses linear bitstrings and standard GP [2] uses tree
structures and applies search operators directly to trees.

2.2 Locality

The locality [5, 6, 10] of a representation describes how well neighboring geno-
types correspond to neighboring phenotypes. The locality of a representation
is high if all neighboring genotypes correspond to neighboring phenotypes. In
contrast, the locality of a representation is low if some neighboring genotypes do
not correspond to neighboring phenotypes.

We want to emphasize that the locality of a representation depends on the
representation fg and the metrics that are defined on Φg and Φp. fg only deter-
mines which phenotypes are represented by which genotypes and says nothing
about the similarity between solutions. To describe or measure the locality of a
representation, a metric must be defined on Φg and Φp.

2.3 Locality and Mutation-Based Search

The metric defined on Φg and the functionality of the search operators depend
on each other. In most search heuristics, mutation usually creates offspring that
have a small or sometimes even minimal distance to their parents. As the metric
used on Φg defines which genotypes are similar to each other, the used genotypic
metric directly determines the mutation operator.

In mutation-based search approaches, mutation steps must be small and
should result in similar solutions as larger search steps would result in a ran-
domization of the search. Then, guided search around good solutions would be-
come impossible as the mutation-based search algorithm would jump randomly
around the search space. However, low-locality representations show exactly this
behavior, as small changes in a genotype do not result in small changes of a phe-
notype. Therefore, for low-locality representations, guided search is no longer
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possible as local search steps in Φg result into random (large) search steps in
Φp. This leads to a low performance of EA approaches when using low-locality
encodings.

3 Grammatical Evolution

Grammatical evolution is a form of linear GP that employs linear genomes, uses
a grammar in Backus-Naur form (BNF) to define the phenotypic structures, and
performs an ontogenetic mapping from the genotype to the phenotype.

3.1 Functionality

GE is an EA variant that can evolve computer programs defined in BNF. In
contrast to standard GP [2], the genotypes are not parse trees but bitstrings of
a variable length. A genotype consists of groups of eight bits (denoted as codons)
that select production rules from a BNF grammar. For the construction of the
phenotype from the genotype, see Sect. 3.3.

The functionality of GE follows standard EA approaches using binary geno-
types. As simple binary strings are used as genotypes, no specific crossover
or mutation operators are necessary. Therefore, standard crossover opera-
tors like one-point or uniform crossover and standard mutation operators
like bit-flipping mutation can be used. A common metric for measuring the
similarity of binary strings (compare Sect. 2.1) is the Hamming distance.
Therefore, the application of bit-flipping mutation creates a new solution with
genotypic distance dg = 1. For selection, standard operators like tournament
selection or roulette-wheel selection can be used. Some GE implementations
use steady state replacement mechanisms and duplication operators that du-
plicate a random number of codons and insert these after the last codon po-
sition. As usual, selection decisions are performed based on the fitness of the
phenotypes.

GE has been successfully applied to a number of diverse problem domains such
as symbolic regression [1, 3], trigonometric identities [4], symbolic integration [3],
the Santa Fe trail [1], and others. The results indicate that GE can be applied to
a wide range of problems and validates the ability of GE to generate multi-line
functions in any language following BNF notation.

3.2 Backus-Naur-Form

In GE, the Backus-Naur form (BNF) grammar is used to define the grammar of a
language as production rules. Based on the information stored in the genotypes,
BNF-production rules are selected and form the phenotype. In BNF, it can be
distinguished between terminals, which are equivalent to leaf nodes in trees, and
non-terminals, which can be interpreted as interior nodes in a tree and can be
expanded. A grammar in BNF is defined by the quadruple {N, T, P, S}, where
N is the set of non-terminals, T is the set of terminals, P is a set of production
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rules that maps N to a set of elements of T and N , and S ∈ N is a start
symbol.

To apply GE to a problem, it is necessary to define the BNF grammar for the
problem. The BNF grammar must be defined such that the optimal solution for
a specific problem can be created from the elements defined by the grammar.

3.3 Genotype-Phenotype Mapping of Grammatical Evolution

In GE, a phenotype is created from binary genotypes in two steps. In a first
step, integer values are calculated from codons of eight bits. Therefore, from a
binary genotype xg,bin of length 8l we get an integer genotype xg,int of length
l, where each integer xg,int

i ∈ {0, . . . , 255}, for i ∈ {0, . . . , l − 1}. Beginning with
the start symbol S ∈ N , the integer value xg,int

i is used to select production rules
from the BNF grammar. We denote with nP the number of production rules in
P . To select a rule, we calculate the number of the used rule as xg,int

i mod nP ,
where mod denotes the modulo operation. In this manner, the mapping process
traverses the genome beginning from the left hand side (xg,int

0 ) until one of the
following situations arises:

– The mapping is complete. All non-terminals are transformed into terminals
and a complete phenotype xp is generated.

– The end of the genome is reached (i = l − 1) but the mapping process is
not yet finished. The individual is wrapped, the alleles are reused, and the
reading of codons continues. As genotypic alleles are used several times with
different meaning, wrapping can have a negative effect on locality. However,
without mapping a larger number of individuals is incomplete and invalid.

– An upper threshold on the number of wrapping events is reached and the
mapping is not yet complete. The mapping process is halted and the indi-
vidual is assigned the lowest possible fitness value.

The mapping is deterministic, as the same genotype always results in the same
phenotype. However, the interpretation of xg,int

i can be different if the genotype
is wrapped and a different type of rule is selected. A more detailed description
of the mapping process including illustrative examples can be found in [1, 3].

4 Test Problems

We investigate the locality and performance of GE for the Santa Fe Ant trail
and symbolic regression problem. Both problems are standard for GP and GE.

4.1 Santa Fe Ant Trail

In the Santa Fe Ant trail problem, 89 Pieces of food are located on a discontinu-
ous trail which is embedded in a 32 by 32 toroidal grid. The goal is to determine
rules that guide the movements of an artificial ant and allows the ant to collect
a maximum number of pieces of food in tmax search steps. In each search step,
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exactly one action can be performed. The ant can turn left (left()), turn right
(right()), move one square forward (move()), or look ahead one square in the
direction it is facing (food ahead()). The BNF grammar for the Santa Fe ant
trail problem is shown in Fig. 1(a).

N= {code,line,expr,if-stat,op},
T= {left(), right(), move(),

food ahead(), else, if, {,
}, (,), ;},

S= code.
Production rules P:
<code> ::= <line>

| <code><line>
<line> ::= <expr>
<expr> ::= <if-stat>

| <op>
<if-stat> ::= if(food ahead())

{<expr>} else
{<expr>}

<op> ::= left();
| right();
| move();

(a) Santa Fe Ant trail

N= {expr, op, pre op}
T= {sin,cos,exp,log,+,-,/,*,x,1,(,)}
S= <expr>

Production rules P:
<expr> ::= <expr><op><expr>

| (<expr><op><expr>)
| <pre-op>(<expr>)
| <var>

<op> ::= +
| -
| /
| *

<pre-op> ::= sin
| cos
| exp
| log

<op> ::= x
| 1

(b) symbolic regression

Fig. 1. BNF grammars for test problems

4.2 Symbolic Regression

In this example [2], a mathematical expression in symbolic form must be found
that approximates a given set of 20 data points (xi, yi). The function that should
be approximated is

f(x) = x4 + x3 + x2 + x, (1)

where x ∈ [−1; 1]. The used BNF grammar is shown in Fig. 1(b).

5 Locality of Grammatical Evolution

To measure the locality of a representation, we have to define a metric for Φg and
Φp. For binary genotypes, usually the Hamming distance is used. It measures
the number of different alleles in two genotypes xg and yg and is calculated as
dg

xg,yg =
∑

i |xg
i − yg

i |. A mutation (bit-flipping) of an individual x results in a
neighboring solution y with distance dg

x,y = 1.

5.1 Tree Edit Distance

It is more difficult to define appropriate metrics for phenotypes that are pro-
grams or expressions. In GE and GP, phenotypes can be described as expression



On the Locality of Grammatical Evolution 325

trees. Therefore, edit distances can be used for measuring differences/similarities
between different phenotypes. In general, the edit distance between two trees
(phenotypes) is defined as the minimum cost sequence of elemental edit op-
erations that transform one tree into the other. There are the following three
elemental operations:

1. deletion: A node is removed from the tree. The children of this node become
children of their parent.

2. insertion: A single node is added.
3. replacement: The label of a node is changed.

To every operation a cost is assigned (usually the same for the different op-
erations). [11] presented an algorithm to calculate an edit distance where the
operations insertion and deletion may only be applied to the leaves. [12] intro-
duced an unrestricted edit distance and [13] developed a dynamic programming
algorithm to compute tree edit distances.

In the context of GP, tree edit distances have been used as a measurement for
the similarity of trees [14, 15, 16]. [17, 18] used tree edit distances for analyzing
the causality of GP approaches.

5.2 Results

For investigating the locality of the genotype-phenotype mapping used in GE, we
created 1,000 random genotypes. For the genotypes, we used standard parameter
settings. The length of an individual is 160 bits, the codon size is 8, the wrapping
operator is used, the upper bound for wrapping events is 10, and the maximum
number of elements in the phenotype is 1,000. For each individual x, we created
all 160 neighbors y, where dg

x,y = 1. The neighbors differ in exactly one bit
from the original solution. The locality of the genotype-phenotype mapping can
be determined by measuring the distance dp

x,y between the phenotypes that
correspond to the neighboring genotypes x and y. The phenotypic distance dp

x,y

is measured as the edit distance between xp and yp.
For the GE genotype-phenotype mapping, we use the version 1.01 written by

Michael O’Neill. The GE representation also contains the BNF Parser Gramma,
version 0.63 implemented by Miguel Nicolau. For calculating the tree edit dis-
tance, we used a dynamic programming approach implemented by [13].

As the representation used in GE is redundant, some changes of the genotypes
may not affect the corresponding phenotypes. We performed experiments for the
Santa Fe Ant trail problem and the symbolic regression problem and found that
either 81.98% (Santa Fe) or 94.01% of all genotypic neighbors are phenotypically
identical (dp

x,y = 0). Therefore, in about 90 % of cases a mutation of a geno-
type (resulting in a neighboring genotype) does not change the corresponding
phenotype.

What is important for the locality of GE are the remaining neighbors that
result in different phenotypes. The locality is high if the corresponding pheno-
types are similar to each other. Figure 2 shows the frequency and cumulative
frequency over the distance dp

x,y between expression trees for the two different
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Fig. 2. Distribution of tree edit distances dp
x,y for neighboring genotypes x and y, where

dg
x,y = 1. We show the frequency (left) and cumulative frequency (right) over dp

x,y for
the Santa Fe Ant trail problem and the symbolic regression problem.

test problems. We only consider the case where dp
x,y > 0. The results show that

for the Santa Fe Ant trail problem, many genotypic neighbors are also phenotypic
neighbors (about 78%). However, there are also a significant amount of geno-
typic neighbors where the corresponding phenotypes are completely different.
For example, more than 8% of all genotypic neighbors have a tree edit distance
dp

x,y ≥ 5. The situation is worse for symbolic regression. Only about 45% of all
genotypic neighbors correspond to phenotypic neighbors and about 14% of all
genotypic neighbors correspond to phenotypes where dp

x,y ≥ 5.
We see that the locality of the genotype-phenotype mapping used in GE is

not perfect. For the two test problems, a substantial percentage of neighboring
genotypes do not correspond to neighboring phenotypes. Therefore, we expect
some problems with the performance of mutation-based GE search approaches
in comparison to other approaches that use a high-locality encoding.

6 Influence of Locality on GE Performance

The previous results indicate some problems of GE with low locality. Therefore,
we investigate how strong the low locality of the genotype-phenotype mapping
influences the performance of GE. We focus the study on mutation only. How-
ever, we assume that the results for mutation are also relevant for crossover
operators (compare [8, 6, 10]).
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6.1 Experimental Setting

For the experiments, we want to make sure that we only examine the impact of
locality on GE performance and that no other factors blur the results. There-
fore, we implemented a simple local (1+1)-EA using only mutation as a search
operator. The search strategy starts with a randomly created genotype and it-
eratively applies bit-flipping mutations to the genotypes. If the offspring has a
higher fitness than the parent it replaces it. Otherwise the parent remains the
actual solution. The (1+1)-EA behaves like a simple local search.

We perform experiments for both test problems and compare an encoding
with high locality with the representation used in GE. In the runs, we randomly
generate a GE-encoded initial solution and use this solution as the initial solution
for both types of representations. For GE, a search step is the mutation of
one bit of the genotype, and the phenotype is created from the genotype using
the GE genotype-phenotype mapping process. Due to the low locality of the
representation, we expect problems when focusing the search on areas of the
search space where solutions with high fitness can be found. However, the low
locality increases the evolvability of GE what often makes it easier to escape
local optima. Furthermore, we should bear in mind that many genotypic search
steps do not result in a different phenotype.

We compare the representation used in GE with a standard representation
used in GP. We define the search operators in such a way that a mutation always
results in a neighboring phenotype (dp

x,y = 1). Therefore, the mutation operators
are directly applied to the trees xp. We use the following mutation operators:

– Santa Fe Ant trail
• Deletion: A leaf node from the set of terminals T is deleted.
• Insertion: A new leaf node from T is inserted.
• Replacement: A leaf node (from T ) is replaced by another leaf node.

– symbolic regression
• Deletion: Either two nodes (a leaf node that contains x and a preceding

node that contains sin, cos, exp, or log) or three nodes (two leaf nodes
x or 1 and the common preceding node that contains +, -, *, or /) are
replaced by a leaf node x.

• Insertion: Either sin, cos, exp, or log or +, -, *, or / (plus an additional
leaf node x or 1) are inserted at a leaf that contains x.

• Replacement: +, -, *, and / are replaced by each other; sin, cos, exp, and
log are replaced by each other; x and 1 are replaced by each other.

A mutation step (in the EA, the type of mutation operator is chosen randomly)
always results in a neighboring phenotype and we do not need an additional
genotype-phenotype mapping like in GE as we apply the search operators di-
rectly to the phenotypes.

Comparing these two different approaches, in GE, a mutation of a genotype
results in most cases in the same phenotype, sometimes in a neighboring pheno-
type, but also sometimes in phenotypes that are completely different (compare
the plots presented in Fig. 2). The standard GP representation is a high-locality



328 F. Rothlauf and M. Oetzel

 0

 5

 10

 15

 20

 0  250  500  750  1000

fit
ne

ss

search steps

GE−encoding
high−locality encoding

(a) Santa Fe Ant trail

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  250  500  750  1000

er
ro

r

search steps

GE−encoding
high−locality encoding

(b) symbolic regression

Fig. 3. Performance of a mutation-based (1+1)-EA using either the GE encoding or a
high-locality encoding for the Santa Fe Ant trail problem and the symbolic regression
problem

representation as a mutation always results in a neighboring phenotype. There-
fore, the search can be focused on promising areas of the search space but the
search can never escape the local optima.

6.2 Performance Results

For the GE approach, we use the same parameter setting as described in Sect. 5.2.
For both problems, we perform 1,000 runs of the (1+1)-EA using randomly cre-
ated initial solutions. Each EA run is stopped after 1,000 search steps. Figure 3
compares the performance for the Santa Fe Ant trail (Fig. 3(a)) and the sym-
bolic regression problem (Fig. 3(b)) over the number of search steps. Figure 3(a)
shows the mean fitness of the found solution and Fig. 3(b) shows the mean error
1/20

∑19
i=0 |fj(xi) − f(xi)|), where f is defined in (1) and fj (j ∈ {0, . . . , 1000})

denotes the function found by the search in search step j. The results are aver-
aged over all 1,000 runs.

The results show that the (1+1)-EA using a high-locality representation out-
performs a (1+1)-EA using the GE representation. Therefore, the low-locality
of the encoding illustrated in Sect. 5 has a negative effect on the performance
of evolutionary search. Although the low locality of the GE encodings allows a
local search strategy to escape local optima, EAs using the GE encoding show
lower performance than a high-locality encoding.

The presented results show that using the GE encoding prolongs search as
more search steps are necessary to converge. This increase is expected as for the
GE encoding a search step often does not change the corresponding phenotypes.
However, the plots show that allowing the (1+1)-EA using the GE encoding to
run for a higher number of search steps does not increase its performance.

7 Conclusions

Previous work has shown that the locality of the genotype-phenotype mapping
(representation) is important for the success of EAs. This study analyzes the lo-
cality of the representation used in grammatical evolution (GE). GE differs from
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other GP approaches by using binary genotypes and constructing phenotypes by
choosing construction rules in Backus-Naur form grammar.

The results show that the GE representation has some problems with locality
as neighboring genotypes often do not correspond to neighboring phenotypes.
Therefore, a guided search around high-quality solutions can be difficult. How-
ever, due to the lower locality of the representation, it is easier to escape from
local optima. Comparing a simple (1+1)-EA using either the GE representation
with a standard GP encoding with high-locality reveals that the low locality of
the GE representation reduces the performance of local search.

The results of this study allow a better understanding of the functionality
of GE and can deliver some explanations for problems of GE that have been
observed in literature. We want to encourage GE researchers to consider locality
issues for further developments of the genotype-phenotype mapping. We believe
that increasing the locality of the GE representation can also increase the per-
formance and effectiveness of GE.
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Abstract. The Boolean satisfiability problem (SAT) has many appli-
cations in electronic design automation (EDA) as well as theoretical
computer science. Most SAT solvers for EDA problems use the DPLL
algorithm and conflict analysis dependent decision heuristics. When the
search starts, the heuristics have little or no information about the struc-
ture of the CNF. In this work, an algorithm for initializing dynamic de-
cision heuristics is evolved using genetic programming. The open-source
SAT solver MiniSAT v1.12 is used. Using the best algorithm evolved,
an advantage was found for solving unsatisfiable EDA SAT problems.

1 SAT

The Boolean satisfiability problem (SAT) is the seminal NP-complete problem
described by S. Cook in 1971. Given a Boolean function f(v1, v2, ..., vn) in n
variables, the SAT problem is the question if there exists an assignment to the
variables v1, ..., vn so that the function f evaluates to true, or if no such assign-
ment exists, i.e. f = false. In the former case f is called satisfiable, in the latter
unsatisfiable. A set of variable assignments that satisfies a Boolean expression is
called a model.

SAT problems are usually given in conjunctive normal form (CNF), which is a
product of sum-terms. Each sum-term or clause is the Boolean OR of a number
of literals, which are variables or negated variables. Clauses which contain only
one literal are called unit-literal clauses.

For a CNF to become satisfied, each clause must be satisfied (i.e. evalu-
ate to true). This is the case if at least one literal in the clause evaluates to
true. Unit-literal clauses can only be satisfied if their single literal evaluates to
true; this forced assignment is called an implication. The implied assignment
must be made in the entire CNF, possibly leading to further implications. As-
signing implications until no further implications are present is called Boolean
constraint propagation (BCP).

P. Collet et al. (Eds.): EuroGP 2006, LNCS 3905, pp. 331–340, 2006.
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If a variable occurs only in one polarity (negated or not negated), the literal
can be assigned true without changing the satisfiability of the expression. This
is the pure literal rule.

1.1 DPLL Algorithm

After the Davis-Putnam algorithm (DP), which suffered from rapid memory ex-
haustion, the Davis(–Putnam)–Loveland–Logemann algorithm (DPLL or DLL)
[2] for solving SAT was invented. DPLL is a complete algorithm (can prove sat-
isfiable and unsatisfiable) and operates on Boolean formulas in CNF. The basic
concept of DPLL is a depth-first search of all possible variable assignments to
find a model of the SAT problem. If no model can be found, then the problem
is unsatisfiable.

Before the actual search starts, some preprocessing can be performed. This
always consists at least of the application of BCP for all unit-literal clauses of the
original CNF, but can also include application of the pure literal rule or other,
more sophisticated algorithms. The search starts with a decision being made
about an assignment, i.e. which variable should be assigned which value (true
or false). Then, to prune the search space, all implications of the decision are
propagated (BCP). The first decision and all its implications have the decision
level 1, the second has level 2 etc. Decision level 0 refers to assignments made
before the actual search.

After BCP, the CNF is either satisfied, unsatisfied or its value is undetermined.
In the latter case, another decision must be made. If the CNF is satisfied, a model
was found and the algorithm ends. If it is unsatisfied, then a conflict has occurred
and backtracking is necessary.

In the original DPLL algorithm, backtracking is chronological. When a conflict
is encountered, the algorithm inverts (flips) the value of the last decision assign-
ment that was not flipped already. Many current DPLL SAT solvers use non-
chronological backtracking (e.g. GRASP [6] and Chaff [3]), which is achieved
by learning new clauses during search and analyzing the CNF to find the lowest
decision level at which the current conflict can be resolved. A CNF is found to be
unsatisfiable if backtracking is not possible any more because the first decision
was already flipped (classic DPLL) or if two conflicting unit-literal clauses have
been learned (DPLL with learning). Non-chronological backtracking is usually
more effective for EDA problems.

The learned clauses are computed each time a conflict has occurred. They
encode assignment combinations that would lead to the same conflict, and are
also called conflict clauses. More than one clause can be learned from a conflict.
The conflict clauses are derived by analyzing an implication graph (IG) [6]. There
are several schemes for the extraction of the conflict clauses from the IG.

1.2 Decision Heuristics

Decision heuristics can be classified as static or dynamic. Static decision heuris-
tics compute a variable order before the search starts (e.g. during preprocessing)
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and never change that order. Dynamic decision heuristics take into account the
current state of the CNF and the solver.

Conflict analysis dependent decision heuristics make use of learned clauses for
decisions. The solver Chaff uses the Variable State Independent Decaying Sum
(VSIDS) heuristic, which attempts to satisfy recent conflict clauses. MiniSAT,
the solver used in this work, uses a slightly improved variant of VSIDS. Each
variable has an activity associated with it, which is a double-precision floating-
point value initialized with 0 (in VSIDS, each literal has its own activity; their
initial values are the literal counts in the original CNF). When a decision has
to be made, the variable with the highest activity is chosen (ties are broken
randomly).

After each conflict, an increment value is added to the activities of the vari-
ables occurring in the conflict clause, and the increment value is multiplied with
a constant greater than 1. This ensures that recently learned clauses have more
influence on the activities. The activities have to be rescaled once in a while
to prevent overflow. With a small probability, MiniSAT sometimes chooses a
random variable; this has been found to help solving some problems. Decision
variables are always assigned the value false first.

2 Genetic Programming

Genetic programming (GP) as described in [1] is used in this work to evolve
an initialization algorithm for DPLL dynamic decision heuristics. Automatically
Defined Functions (ADF) were not used.

GP is a type of evolutionary algorithm. It evolves a population of individu-
als over a number of generations, where the individuals are LISP S-expressions
(parse trees) composed of terminals and functions. The arguments and return
types of functions have to be of the same type (e.g. floating-point numbers).
Terminals are either numerical constants or sensors, which convey informa-
tion about the environment. A fitness measure evaluates how well an individual
solves a problem. Through a process similar to natural selection, a new popula-
tion is created by copying, mutation or crossover of individuals of the previous
generation.

2.1 Designing an Initialization Algorithm

As mentioned in Sect. 1.2, in the MiniSAT heuristic the activities determining
which variable to choose are initialized to 0. Therefore the first decision is quasi-
random, because all activities are tied and some free variable will be chosen
randomly. It is conjectured in this work that initializing the activities before
the search starts, taking into account the structure of the CNF, can significantly
improve solving time. Related works [8] have been successful in accelerating SAT
by extracting an improved ordering of the variables from the structure of the
CNF. The MiniSAT heuristic will be the target for improvement. Let x be the
variable for which its initial activity a0(x) is computed (Equation 1).
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a0(x) =
∑

clauses C,
x ∈ C ∨ ¬x ∈ C

⎛
⎜⎜⎜⎜⎜⎝

∑
literals l ∈ C,
l �= x ∧ l �= ¬x

f(xp, xn, lp, ln, Cs, ...)

⎞
⎟⎟⎟⎟⎟⎠ (1)

a0(x) iterates over all clauses C containing x or ¬x, and in each clause C all
literals l except x or ¬x are examined. The total initial activity a0(x) is computed
as a sum over the expression f , whose arguments are numerical values describing
the CNF, e.g. xp (the number of positive occurrences of the current x). f is
the expression that will be described by the GP individuals; its arguments are
implemented by sensor terminals.

2.2 Terminal and Function Sets

The return- and argument type of the functions as well as of the terminals is
a double-precision floating-point number, so that the closure requirement [1] is
satisfied. The terminal set (Table 1) consists of 11 different sensors with infor-
mation about the current variable x, the current literal l, the clause C and the
CNF itself, and additionally, randomly generated numerical constants.

A number of binary and unary functions (Table 2) are available. The arith-
metic division operation (÷) is the special division commonly used in GP that
allows division by 0, returning 0 in that case.

Table 1. Terminal set

Terminal Meaning

xn, ln # of negative literals of x and the variable of l in the CNF
xp, lp # of positive literals of x and the variable of l in the CNF
xc, lc # of occurrences of x and l in the CNF (xc = xn + xp, lc = ln + lp)
xs, ls Polarity of x in clause C / current literal l (0 negative, 1 positive)
Cs # of literals in current clause C
Nv, Nc # of variables/clauses of the CNF
Constants Real numbers between −10 and 10

Table 2. Function set

Function Return value Function Return value

a {+,−,×,÷} b abs(a) |a|
a min b minimum(a, b) sqrt(a) |a|
a max b maximum(a, b) sign(a) a < 0 : −1, a = 0 : 0, a > 0 : 1
a if>0 b a > 0 : b, a ≤ 0 : 0 exp(a) ea

a less b a < b : 1, a ≥ b : 0 inv(a) a �= 0 : 1
a
, a = 0 : 0

neg(a) −a
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2.3 Fitness Measure

The fitness measure (to be minimized) is the accumulated run time in sec-
onds of the SAT solver for a training set of SAT problems. The run time does
not include the time needed for initializing the activities, which is ignored in
this work. If the solver times out for a problem, then the fitness value to ac-
cumulate for that problem is set to twice the timeout limit in seconds as a
penalty.

2.4 Creating a New Population

The default strategy implemented in the GP library [5] was used. Individuals
exist in discrete generations (generational GA). The current generation’s popu-
lation is sorted by fitness, and the better half is copied unchanged into the next
generation (elitism); the worse half is deleted. For the copied individuals the
fitness does not have to be recomputed. The remaining individuals of the next
generation are offspring of the better half. On each pair of current individuals
ranked 1st and 2nd, 3rd and 4th etc. crossover is applied once, and the ensuing
two offspring individuals enter the next generation. The best individual found
always remains in the population. Mutation is not used.

3 Experimental Results

3.1 Implementation

C++ source code from [5] was used for the implementation of the GP func-
tionality. The library provides the ability to create user-defined terminals and
functions, and includes algorithms for initializing the population and the breed-
ing strategy described in Sect. 2.4. MiniSAT v1.12, due to its high performance
and well-documented source (also C++), was used as the SAT solver. The GNU
C++ compiler was used to create the executable.

3.2 Preprocessing the Training Problems

SAT benchmark problems usually are published in a raw state containing unit-
literal clauses etc. To remove as many interfering influences on the initialization
algorithm as possible some preprocessing was applied on the problems.

Covered clauses are clauses that contain a superset of the literals of another,
smaller clause. The larger clause can be removed without changing the Boolean
function represented by the CNF.

The resolution rule creates a new clause (the resolvent) out of two clauses.
The CNF consisting of the resolvent and the original clauses describes the same
Boolean function as the original clauses. Given two clauses c1 = (r ∨ L1) and
c2 = (¬r ∨ L1 ∨ L2), where L1 and L2 are (sub-)clauses not having any literals
in common, nor the complementary literals r and ¬r, the resolvent of c1 and c2
is the clause cr = (L1 ∨ L2). c2 is covered by cr, therefore c2 can be replaced by
cr. This limited form of resolution makes some of the constraints more strict.
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The training problems were preprocessed with a separate self-made tool that
applied BCP, the pure literal rule, removal of covered (and duplicate) clauses
and limited resolution in a loop until no further change was possible. Due
to the algorithm used, the clauses are also sorted by size in ascending or-
der, which has no effect on the initialization algorithm but affects the solving
time. The preprocessed SAT problems have the same satisfiability as the
original ones.

3.3 Experiment Setup

The experiments were run on four PCs with different architectures. All fitnesses
and solving times reproduced in the following have been normalized to the ref-
erence machine, a 2.4 GHz Pentium 4 PC running Linux.

The problems used for the training sets in this work were circuit verification
problems taken from [7]. Two training problem sets were used, one with 9 prob-
lems (“large” set) and one with 3 problems (“small” set). All training problems
were unsatisfiable.

3.4 Results

Given the population size P , number of training problems N , number of genera-
tions G and a timeout in seconds T , the maximum run time for the GP program
is Tm = PNT (1 + G−1

2 ) (because the fitness of half of the individuals in each
generation has been computed before). Very large values of P and G are usual in
GP, but this was not possible for this work due to the large run times required.

18 runs of the small and 10 runs of the large training set were executed with
varying parameters. The parameters, resulting f -expressions and best fitnesses
of the best, one average and the worst run of both sets are shown in Table 3.
The best f -expressions found for the two sets will be referred to as fbest,L resp.
fbest,S in the following.

The f -expressions usually contained some amount of redundancy typical of
GP (e.g. abs(abs(x)); they have been simplified for clarity. The syntax for the
expressions is in the format of the program’s output, e.g. the terminal ln is
written as Ln. Binary functions have their arguments left and right of their
name, e.g. (Xc max Lp) for max(xc, lp). Unary functions have their argument in
brackets, e.g. e^(Xn) for exn .

Table 3. Best, average and worst results for large and small training set

f-expression Fitness P G T
e^(-Lc) - Lp 228 64 16 60
7.055845 / abs(9.116130 - Xc) 261 64 16 90
-Ln 294 64 12 120
e^(Xp)/((sqrt((0.042679+Lp)/1.540332))-7.029679) 114 128 8 120
-7.187368 161 64 8 120
e^(2.068685/Nc)-2.068685 197 64 16 60
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It is interesting that many of the resulting f -expressions always computed a
negative initial activity for any reasonable CNF (in 8 of 18 runs of the small,
and 9 of 10 runs of the large set). This might prevent some variables from being
chosen early on, even after occurring in conflict clauses, when they start with
large negative activities.

Table 4 shows the solving times for the best individuals of both sets: Torig and
Tprep for the original and preprocessed CNF with standard MiniSAT, TGP,L using
fbest,L and TGP,S using fbest,S (as reported by the GP program). Additionally, for
counterchecking, the run times are given for solving preprocessed and original
problems with a MiniSAT solver modified to initialize the activities with fbest,L

(columns Tprep,L and Torig,L) and fbest,S (columns Tprep,S and Torig,S). These times
include the time for the computation of the initialization, which took up to ca.
4 seconds for the largest CNFs. Problems that timed out after 10 minutes are
shown with a time of 1200 seconds.

The last row of Table 4 shows the average time required to solve the problems
in the respective column. As can be seen, preprocessing almost doubled the
average solving time. It is unknown if this is a coincidence for this particular
training set, or if the preprocessing used here is always detrimental to the solving
process.

Some of the solving times in the counterchecking columns differ strongly from
the times reported by the GP program. It was found after some experimenting
that even small changes of how the f -expression is computed in the source code,
e.g. in the form a+b

c as opposed to a
c + b

c , could result in large changes of the
solving times. Also, small changes in the numerical constants strongly affect
solving times. It is presumed that the reason why the times reported by the GP
program and those by the countercheck solver using fbest,S are so different is that
the GP program reported the values of the constants only up to a certain number
of decimal places; the very small differences to the actual, non-truncated values
were enough to distort the solving times. Since fbest,L contains no constants, this
effect is less pronounced for it.

Table 4. Solving times of training sets with best initialization

Problem Torig Tprep TGP,L TGP,S Tprep,L Tprep,S Torig,L Torig,S

3pipe 2 ooo 5 11 9 - 9 8 4 3
3pipe 6 10 3 - 4 3 3 9
4pipe 1 ooo 18 27 18 - 19 23 26 1200
4pipe 2 ooo 28 31 17 - 18 235 42 1200
4pipe 3 ooo 55 82 49 - 52 27 46 1200
4pipe 4 ooo 132 64 41 - 43 48 34 1200
engine 5 case1 24 23 19 - 29 131 21 192
4pipe q0 k 38 306 36 30 38 54 29 18
engine 4 52 36 36 28 39 27 41 43
4pipe 113 325 - 57 200 42 125 521
Average 47.1 91.5 - - 45.1 59.8 37.1 -
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The best result for the large training set was fbest,L = e−lc − lp. A qualitative
analysis of this result will be attempted in the following. For the first term it
is always true that 0 < e−lc < 1, because the variable count lc > 0. Therefore
the dominant term is lp with lp ≥ 1, so that f < 0. For an expression g = lp,
the initial activity would be highest for variables that occur often and in large
clauses (then the outer and inner sums in Equation 1 have many iterations),
where the clauses contain variables whose positive literal occurs often in the
CNF (so the lp themselves are large). Because f ≈ −lp, these variables have the
lowest (i.e. negative) activity, therefore their opposite is chosen, i.e. variables
occurring rarely, and in short clauses; the clauses should contain variables whose
positive literals occur rarely. If a variable occurs mostly in short clauses, then
assigning it is likely to create implications quickly (clauses are shortened where
the literals are false) and relatively strong constraints are removed (clauses are
satisfied by true literals). The significance of the lp is not clear. It may have
something to do with the fact that MiniSAT assigns false to decision variables
first. That the worst expression for the large training set was −ln is probably
coincidence.

The best result for the small training set was fbest,S. This expression does not
always compute a negative value. The effect of fbest,S is not clear, but it is assumed
that this result is strongly specialized on the 3 training problems.

Fig. 1 charts the best fitness value found in each generation for the 3 runs of
both training sets presented in Table 3. It is noticeable that the worst run for
the small training set experienced almost no improvement over the generations;

Fig. 1. Progression of the best fitness
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Table 5. Solving time for problems not used in the training sets

Problem Tstd,orig Tstd,prep Tinit,orig Tinit,prep

5pipe 1 ooo 86 113 83 119
5pipe 2 ooo 108 116 165 142
5pipe 3 ooo 76 134 134 174
5pipe 4 ooo 1200 346 386 1200
5pipe 5 ooo 97 95 97 102
5pipe 55 131 45 147
6pipe 6 ooo 1200 1200 538 1200
7pipe bug 1 1200 1200 1200
engine 4 nd 218 176 204 198
engine 5 nd case1 102 109 104 104
engine 6 case1 438 273 329 275
5pipe q0 k 278 1200 415 1200
6pipe q0 k 210 189 144 341
Sum 4068 5281 3845 6403

it used the same population size (64) and timeout (60 sec.) as the best run for
the large training set. Presumably the P parameters used in this work are too
low, aggravating an effect known as premature convergence [1]. Another problem
is the imprecision of the run time measurement, which could vary up to several
seconds, so that small improvements can not be detected reliably.

Table 5 shows solving times in seconds for other problems from the benchmark
suites [7] that were not used in the training sets (1200 for timing out after
10 minutes); not shown are problems that were not solvable by at least one
configuration or took negligible solving time (less than 10 seconds). The indexes
std and init mean standard MiniSAT or MiniSAT with initialization using
fbest,L; orig and prep mean original or preprocessed problems. The last row of
Table 5 contains the sum of the times, similar to the GP fitness measure. Solving
the original problems with initialization has the best fitness, because it only times
out once, for the problem 7pipe bug. This may be because 7pipe bug is the only
satisfiable problem in [7], although preprocessing also makes it unproportionally
harder to solve.

4 Conclusion and Future Work

An approach for optimizing the dynamic decision heuristics of DPLL SAT solvers
was presented, in which the variable activities are initialized with values (once,
before the search starts) which are dependent on the structure of the problem’s
CNF. A variable’s activity is computed by examining all literals (except the
variable’s) in clauses that contain the variable, and calculating the sum over a
function whose arguments are numerical values describing the literal, the variable
or the CNF. The function is described by the individuals of genetic programming,
which is used to evolve an optimal expression that minimizes solving time.
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SAT problems from 3 different EDA benchmark suites were preprocessed to
make the problems as compact and free of avoidable interference as possible for
GP. A number of GP runs were executed using a small and a large training
set of problems. Attempts to analyze the best evolved functions yielded unclear
results. When the best initialization evolved for the large set was applied on
the remaining problems of the benchmark suites, it was found that by using ini-
tialization on the original CNFs, rather than preprocessed ones, more problems
could be solved with a timeout of 10 minutes than with the other configurations.

The population sizes and number of generations used in this work were un-
typically low for GP. One consequence of this was premature convergence, which
was probably reinforced by the breeding strategy of the GP library. Higher GP
parameters, larger training sets and a better breeding strategy may increase the
chance to find a more efficient and more generally beneficial initialization.

The extent to which a single initialization of the variable activities can im-
prove SAT solving is unknown. The presented approach may not be the most
efficient to effectively analyze the CNF structure and compute generally bene-
ficial initial activities. Using GP to describe more powerful programs, i.e. with
memory operations, rather than a simple algebraic expression as in this work
may yield a much better initialization.
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4. N. Een, N. Sörensson: An Extensible SAT-solver. SAT 2003.
5. M. Hollick, H. Kuhlmann: Genetic Programming in C/C++. CSE99/CIS899 Final

Report, May 1995. http://www.cis.upenn.edu/~hollick/genetic/paper2.html
6. J. P. Marques-Silva, K. A. Sakallah: GRASP - A New Search Algorithm for Satisfi-

ability. ICCAD. IEEE Computer Society Press, 1996.
7. M. N. Velev, ENGINE-UNSAT.1.0, FVP-UNSAT.2.0, PIPE-UNSAT.1.1, Available from:

http://www.ece.cmu.edu/~mvelev.
8. F. A. Aloul, I. L. Markov, K. A. Sakallah: MINCE: A Static Global Variable-

Ordering Heuristic for SAT Search and BDD Manipulation. Journal of Universal
Computer Science, vol. 10, no. 12 (2004), 1562-1596.



P-CAGE: An Environment for Evolutionary
Computation in Peer-to-Peer Systems

Gianluigi Folino and Giandomenico Spezzano

Institute for High Performance Computing and Networking (ICAR)-CNR,
Via P. Bucci 41C - Rende(CS), Italy
{folino, spezzano}@icar.cnr.it

Abstract. Solving complex real-world problems using evolutionary
computation is a CPU time-consuming task that requires a large amount
of computational resources. Peer-to-Peer (P2P) computing has recently
revealed as a powerful way to harness these resources and efficiently deal
with such problems. In this paper, we present a P2P implementation of
Genetic Programming based on the JXTA technology. To run genetic
programs we use a distributed environment based on a hybrid multi-
island model that combines the island model with the cellular model.
Each island adopts a cellular genetic programming model and the mi-
gration occurs among neighboring peers. The implementation is based
on a virtual ring topology. Three different termination criteria (effort,
time and max-gen) have been implemented. Experiments on some pop-
ular benchmarks show that the approach presents a accuracy at least
comparable with classical distributed models, retaining the obvious ad-
vantages in terms of decentralization, fault tolerance and scalability of
P2P systems.

1 Introduction

Peer-to-peer (P2P) computing is attracting attention in research and industry,
spurred also by the popularity of file sharing systems such as Napster, Gnutella,
and Morpheus. Peers operate autonomously and asynchronously and perform
well in a decentralized environment, as they reuse existing architecture, guaran-
tee interoperability and can exploit the availability of networks resources. P2P
networks are emerging as a new distributed computing paradigm for their po-
tential to harness the computing power of the hosts composing the network and
make their under-utilized resources available to others.

Genetic programming (GP ) is an extension of genetic algorithms (GAs) that
iteratively evolves a population of trees having variable size, by applying varia-
tion operators. Each individual encodes a candidate solution and is associated
with a fitness value that measures the goodness-of-fit of that solution. The capa-
bility of GP in solving challenging problems, coming from different application
domains, has been largely recognized, but for difficult problems GP requires
large sizes of population and a sufficient number of generations. The necessity
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of high computational resources, both in terms of memory, to store large popu-
lations of trees, and in terms of time, to evaluate the fitness of the individuals in
the population, may degrade GP performance drastically or make the algorithm
inapplicable when it must cope with large difficult problems. The use of P2P re-
sources may make large problems affordable for GP, by using large populations
distributed around the network.

While P2P implementations of genetic algorithms are present in literature
[10] [7], to the best of our knowledge, there are no P2P implementations of GP.
Some efforts in this direction have already been made in the papers [2] [11] in
which asynchronous and distributed GP models adapt to P2P implementations
have been addressed. Other steps forward have been made in [5], in which some
P2P problems are tackled to the aim of coping with wireless sensor networks.

We have devised a system, called P-CAGE (P2P CellulAr Genetic Environ-
ment), that is one of the first P2P implementation of GP. Our system has been
developed using JXTA-J2SE libraries, the Java implementation of JXTA pro-
tocols [1] that guarantee interoperability, platform independence and ubiquity.
JXTA technology is a set of open, generalized P2P protocols that allows any con-
nected device (cell phone to PDA, PC to server) on the network to communicate
and collaborate.

P-CAGE is based on a hybrid variation of the classic multi-island model that
leads not only to a faster algorithm, but also to superior numerical performance.
This hybrid model combines the island model with the cellular model. The is-
land model is based on subpopulations, that are created by dividing the original
population into disjunctive subsets of individuals, usually of the same size. Each
subpopulation can be assigned to one processor and a standard (panmictic)
GP algorithm is executed on it. Occasionally, a migration process between sub-
population is carried out after a fixed number of generations. For example, the
k best individuals from one subpopulation are copied to the other subpopula-
tions exchanging the genetic information among populations. Our hybrid model
modifies the island model by substituting the standard GP algorithm with a
cellular GP algorithm. In the cellular model each individual has a spatial lo-
cation, a small neighborhood and interacts only within its neighborhood. The
main difference in a cellular GP, with respect to a panmictic algorithm, is its
decentralized selection mechanism and the genetic operators (crossover, muta-
tion) adopted. In P-CAGE, to take advantage of the cellular model of GP, the
cellular islands are not independently evolved, but the outmost individuals are
asynchronously exchanged so that all islands can be thought as portions of a
single population. P-CAGE distributes the evolutionary processes (islands) that
implement the detection models over the network nodes using a virtual ring con-
figuration. P-CAGE implements the hybrid model as a collection of cooperative
autonomous islands running on the various hosts within a heterogeneous net-
work that works as a P2P system. P-CAGE supports many advantages of P2P
systems. It is asynchronous, scalable, fault tolerant and maintains the accuracy
of other distributed approaches of GP.
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The paper is organized as follows: in section 2, we provide a description of
the architecture and give some details about the implementation of P-CAGE;
section 3 presents the experimental results showing a comparison with other
approaches and analyzing the scalability. Finally, section 4 concludes the paper
and illustrates some directions for future works.

2 P-CAGE Architecture and Implementation

In this section we describe the implementation of P-CAGE and the algorithm
executed by each peer to implement GP.

As showed in figure 1 P-CAGE is built on the top of JXTA services such as
discovery and membership services and also supplies a graphical user interface.
Peers are arranged on a self-configuring ring topology architecture, so they need
to know only information on the left (previous) and right (next) neighbor. Each
peer adopts the GP cellular approach described in [4] and performs the algorithm
showed in figure 2.

In practice, first it discovers new peers, then it builds the virtual ring topology,
conveniently choosing the left and right neighbor and connecting the neighbor-
ing peers by bidirectional channels. After the topology is established, each peer
executes a certain number of iterations exchanging, at prefixed generations, the
borders of the sub-population, in an asynchronous fashion, until a termination cri-
terion is achieved. The general architecture of P-CAGE is showed in figure 3. In
the following, the different phases of the algorithm are described in more detail.

Finding peers and building the ring: The ideas to build the virtual ring are
inspired to the strategies described in [8]. The algorithm uses two parameters
min peers and max peers to define respectively a minimum and a maximum
number of peers forming the ring. At the beginning, each peer creates and joins
a group called ”GeneticProgramming” using the JXTA membership service and
starts the search of peers belonging to this group (JXTA discovery service), until
a timeout is expired or the maximum number of peers is reached. The time of
discovery of each peer is stored. At this point, information is distributed to all the
peers discovered and the peers are ordered by minimum time of discovery. The

Fig. 1. P-CAGE application overview
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find peers(); build ring(); build pipes();
create populations();
gen = 0;
while(!termination criterion()){

evolve population(gen);
evaluate fitness();
if(gen%gen migration == 0)

send borders();asinc receive borders();
gen + +;

}
report on run();

Fig. 2. The pseudo code executed by each peer (termination criteria and fault tolerance
strategy not reported)

Fig. 3. Architecture of P-CAGE

Fig. 4. Merging two groups by means of leader l1 and l2

order allows to identify the left and the right neighbor of each peer, respectively
the previous and following in the ordered sequence. The first peer is named leader
of the group. If the minimum number of peers is not reached, the leader tries to
discover other leaders and two or more groups of peers are joined, following the
schema illustrated in figure 4 until the min peers number is reached.

Building pipe and finger table: Each peer creates a bi-directional channel with
its left neighbor and one with its right neighbor using the pipe service of JXTA.
To make the system robust a finger table is built storing k left and k right
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successors, where k typically assumes a value from 2 to 4. If a pipe falls down,
the peer creates a new one using the information contained in the finger table,
i.e. the table is checked until a peer is found and then linked with a pipe.

Evolving population: In the evolving phase, a population of trees with dimension
a × b evolves on each peer, following the hybrid multi-island model adopted by
P-CAGE (in practice, each peer represents an island adopting the cellular model
as CAGE). Every k (gen migration parameter) generations, the borders of the
populations (the outside b trees on the left and on the right side) are exchanged
among neighboring peers using the pipes, in an asynchronous fashion (i.e. if
borders do not arrive to a peer before starting the computation, the peer goes
on with the old trees).

Termination criteria: The algorithm terminates its execution, when a termina-
tion criterion is met, chosen among the following : max-gen, time and effort.

Using the first criterion, P-CAGE ends when each peer has reached the maxi-
mum number of generations. This criterion is easy to implement, but faster peers
must wait slower ones. A timeout is introduced to avoid infinite waiting for peers
that have gone down.

Using a time-based termination criterion, a maximum time is fixed and, when
this time expires, all the peers must terminate. No synchronization is required,
but it is difficult to estimate the right time, also considering the different loads
and speeds of the computers involved in the computation. In fact, if we choose
a time too short, the algorithm could not converge.

Last choice considers the effort, derived from the definition given in [3]. Let
G be the number of generations, N the number of individuals of the population
lying on each peer and AV G LENp the average number of nodes per individual
concerning peer p. Then the required effort in a particular generation n is:

n∑
p=1

G × N × AV G LENGTHp (1)

Effort takes into account the overall effective computation carried out by the
system. However, it requires an overhead necessary to compute the effort and to
communicate the information; in fact, for each prefixed period of time, the total
effort must be computed summing the efforts produced by each peer.

3 Experimental Results

In order to verify the goodness of our implementation, we compared, in terms of
accuracy, our asynchronous hybrid multi-island model to a canonical sequential
implementation of GP and to a parallel cellular implementation of GP.

We used sgpc1.1 [9] as the sequential implementation of genetic programming
and CAGE [4] as the parallel cellular implementation of GP. The peer-to-peer
experiments were conducted on the LAN of the CNR-ICAR Institute. All the
experiments were run for 100 generations and averaged over 20 tries.
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We have used the following problems as benchmark:

Symbolic Regression ([6] par. 7.3). The symbolic regression problem consists
in searching for a non-trivial mathematical expression that, given a set of val-
ues xi for the independent variable(s), always assumes the corresponding value
yi for the dependent variable(s) of a given mathematical function. In the first
experiment, the target function was the polynomial x4 + x3 + x2 + x. A sample
of 20 data points (xi, yi) was generated by randomly choosing the values of the
independent variable x in the interval [-1,1].

Discovery of Trigonometric Identities ([6] par. 10.1). In the second experi-
ment, our aim was to discover a trigonometric identity for cos2x. 20 values xi of
the independent variable x were chosen randomly in the interval [0,2π] and the
corresponding value yi = cos2xi computed. The 20 pairs (xi, yi) constituted the
fitness cases. The fitness was then computed as the sum of the absolute value of
the difference between yi and the value generated by the program on xi.

Symbolic Integration ([6] par. 10.5). The symbolic integration problem con-
sists in searching for a symbolic mathematical expression that is the integral of
a given curve. In this experiment the curve was cosx + 2x + 1 so the genetic
program had to obtain sinx+x2 +x, given 50 pairs (xi, yi) in the interval [0,2π].

Even-4 Parity ([6] par. 20.4). The Even-4 parity problem consists in deciding
the parity of a set of 4 bits. A Boolean function receives 4 Boolean variables
and it returns TRUE only if an even number of variables is true. Thus the goal
function to discover is f(x1, x2, x3, x4) = x1x2x3x4 ∨ x1x2x3x4 ∨ x1x2x3x4 ∨
x1x2x3x4 ∨ x1x2x3x4 ∨ x1x2x3x4 ∨ x1 x2 x3 x4. The fitness cases explored were
the 24 combinations of the variables. The fitness was the sum of the Hamming
distances between the goal function and the solution found.

Even-5 Parity. The problem is the analogue of even-4 considering 5 bit instead
of 4.

Ant Santa Fe ([6] par. 7.2). The artificial ant problem consists in finding the
best list of moves that an ant can execute on a 32 × 32 matrix in order to eat
all the pieces of food put on the grid. In this experiment we used the Santa
Fe trail that contains 89 food particles. The fitness function was obtained by
diminishing the number of food particles by one every time the ant arrived in a
cell containing food. The ant can see the food only if it is in the cell ahead in its
same direction (IfFoodAhead move); otherwise it can move randomly (left or
right) for two (Progn2) or three (Progn3) moves.

This last problem is known to be difficult for distributed GP .
The parameters of the method are shown in table 1; functions and terminal

symbols for each problem are tha same described in Koza’s book [6]. For all
the experiments, we used an overall population size of 3200, except for Symbolic
Regression. For this problem, the size of the population was set to 800 indi-
viduals. In the parallel implementation, the population size was divided equally
among the nodes and the same was made in the peer-to-peer implementation
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Table 1. GP Parameters

Maximum number of generations 100
Probability of crossover 0.8
Probability of choosing internal points for crossover 0.1
Probability of mutation 0.1
Probability of reproduction 0.1
Generative Method for initial random population Ramped
Maximum depth for a new tree 6
Max depth for a tree after crossover 17
Max depth of a tree for mutation 4
Parsimony factor 0.0

among the peers. In this two last cases the Moore neighborhood was adopted.
For P-CAGE, we used 5 peers, migration occurred every 5 generations and the
termination criterion was max-gen.

In the figures 5 a and b, 6 a and b and 7 a and b the results of our experiments
are reported respectively for symbolic regression, discoveries of trigonometric
identities, symbolic integration, ant Santa Fe and even 4 and 5 parity problems.

Observing these figures, we can notice that P-CAGE outperforms canonical
GP for all the problems and it is better or at least comparable with the parallel
cellular implementation. The P-CAGE accuracy is considerably better for the
even 4 parity problem, it is lightly better for the discovery of trigonometric
identities and the symbolic regression problem, and is lightly worst only for the
Ant Santa Fe problem.

To study the scalability of our system, we ran our system, using the same
parameters previously described, varying the number of peers (3, 5, 10) and
maintaining the same overall population. As you can see in figures 8 a and
b,9 a and b, 10 a and b, differences are not statistically significant or are minimal.

(a) (b)

Fig. 5. Accuracy comparison for a) symbolic regression and b) discovery of trigono-
metric identities: Canonical GP, CAGE and P-CAGE
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(a) (b)

Fig. 6. Accuracy comparison for a) symbolic integration and b) Ant Santa Fe: Canon-
ical GP, CAGE and P-CAGE

(a) (b)

Fig. 7. Accuracy comparison for a) Even 4 parity and b) Even 5 parity: Canonical GP,
CAGE and P-CAGE

(a) (b)

Fig. 8. Scalability for (a) symbolic regression and (b) discovery of trigonometric iden-
tities: 3, 5 and 10 peers
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(a) (b)

Fig. 9. Scalability for (a) symbolic integration and (b) Ant Santa Fe: 3, 5 and 10 peers

(a) (b)

Fig. 10. Scalability for (a) Even 4 parity and (b) Even 5 parity: 3, 5 and 10 peers

4 Conclusions

In this paper the P-CAGE environment for the execution of genetic programs
in a P2P environment has been presented. Each peer adopts a cellular model
and the migration occurs among the neighboring peers, displaced in a
virtual ring topology. Experiments on a real network showed that P-CAGE
outperforms canonical GP implementation, as expected, and is at least com-
parable with parallel implementations of GP. Anyway, it exploits the advan-
tages of P2P networks as it is fault tolerant, inexpensive and scalable in terms
of resources. Scalability is reached also in terms of accuracy, as showed by
the experiments, even if we used a number of peers that, in some cases, was
excessive for the difficulty of the problem. In the future, we are interested
in investigating the use of different topologies as small world and scale-free
networks.
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Abstract. Previously, recombination (or crossover) has proved to be unbene-
ficial in Cartesian Genetic Programming (CGP). This paper describes the 
implementation of an implicit context representation for CGP in which the 
specific location of genes within the chromosome has no direct or indirect 
influence on the phenotype. Consequently, recombination has a beneficial effect 
and is shown to outperform conventional CGP in the even-3 parity problem. 

1   Introduction 

Cartesian Genetic Programming (CGP) [1,2] is a form of Genetic Programming (GP) 
which adopts a cartesian arrangement of functional components, in contrast to con-
vetional GP, which is based on a parse tree structure.  CGP exhibits a number of 
benefits over traditional GP, the best known of which is avoidance of bloat, an uncon-
trolled expansion of the program during evolution. 

A criticism of CGP (and GP in general) is that the location of genes within the 
chromosome has a direct or indirect influence on the resulting phenotype [6].  In other 
words, the order in which specific information regarding the definition of the GP is 
stored has a direct or indirect effect on the operation, performance and characteristics 
of the resulting program. Such effects are considered undesirable as they may mask or 
modify the role of the specific genes in the generation of the phenotype (or resulting 
program). Consequently, GPs are often referred to as possessing a direct or indirect 
context representation. 

An alternative representation for GPs in which genes do not express positional de-
pendence has been proposed by Lones and Tyrrell [3-7].  Termed implicit context 
representation, the order in which genes are used to describe the phenotype (or result-
ing program) is determined after their self-organised binding, based on their own 
characteristics and not their specific location within the genotype.  The result is an 
implicit context representation version of conventional parse tree-type GP termed 
Enzyme Genetic Programming.  

It is argued that important sources of evolvability include positional independence, 
functional and structural redundancy, neutrality and implicit reuse of components. 
CGP is an example of an indirect context representation and exhibits three of these 
properties. A summary of Lones’ argument is provided below with particular regard 
to conventional CGP. 
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Functional and structural redundancy: Components are only active in the final  
program if connections are specified by the genotype, otherwise, components are 
inactive. During the process of evolution, it is possible that some components will 
subsequently become active and others inactive. This is termed variation filtering and 
can be considered a characteristic of functional and structural redundancy. A number 
of researchers have reported improved performance when non-coding components of 
evolving solutions (commonly termed introns) are accommodated within genetic 
algorithms [8,9] and linear genetic programming [10,11], but detrimental for tree-
based genetic programming [12]. 

Implicit reuse: As the components within CGP can have more than one output (and 
hence satisfy more than one input) implicit reuse of components is provided in a way 
that is not possible within a conventional parse tree representation of standard GP. 
Poli [13] and Miller and Thomson [1] report solutions utilising components with 
multiple outputs that supports the argument that implicit reuse (as with the biological 
equivalent, pleiotropy) encourages evolvability. 

Neutrality: The functional and structural redundancy described above also permits 
neutrality to be exhibited in the form of evolving interconnections between compo-
nents that aren’t expressed in the current program. Subsequent single point mutations 
may lead to changes to the network that cause these previously redundant components 
to contribute to a fitter program. 

However, CGP does not exhibit positional independence. The effect or meaning of 
a component in the evolved or resulting program is determined by its absolute or 
relative position in the program representation. The manner in which components are 
referenced in CGP is considered arbitrary as there is no correlation between a compo-
nent’s absolute coordinates and its behaviour. Therefore it can be argued that indirect 
context representation has no effect beyond describing the connectivity of a specific 
program. This is also the case when considering the behaviour of components in dif-
ferent programs. Components with the same functionality may have different coordi-
nates and those with different functionality the same coordinates. Hence, any form of 
recombination, such as crossover is unlikely to be constructive in the evolutionary 
process and could explain why this has not been found to be useful in CGP [1]. A lack 
of positional independence also has an important effect on the relationship between 
genes that in combination effect good performance.  

Recombination will not preserve the relationship of these genes, commonly re-
ferred to as building blocks, when conventional forms of crossover are employed. 
Various attempts have been adopted to minimise the destructive effect that such posi-
tional dependence in the representation by preserving building blocks that describe 
the beneficial relationship between particular genes. In GAs, this is termed linkage 
learning, and has been implemented by limiting the destructive effect of crossover 
operations by using special crossover templates [14,15]. However, this does not over-
come the underlying problem which is associated with the program representation. A 
successful approach is the messy GA [16] which uses a floating representation to 
achieve linkage learning. This adopts a two stage solution of identifying building 
blocks and then reassembling them intact in the recombined program. However, the 
algorithm is complex and difficult to apply to a wide range of problem domains with 
good effect. An alternative proposed by Harik [17] called the linkage learning GA 
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overcomes many of these shortcomings. Floating representations have also been ap-
plied to GPs, but with limited success [18] and hence the position dependent nature of 
CGP still needs addressing. 

A further concern with an indirect context representation such as CGP is that when 
a component’s input references are mutated, the resulting arrangement of components 
is in no way represents the degree of mutation applied and hence, cannot be varied in 
a gradual manner. 

This paper describes the implementation of an implicit context representation of 
CGP which it is argued overcomes many of the disadvantages described above. Spe-
cifically, it provides positional independence and thus, supports recombination in a 
constructive manner. 

2   Implicit Context Representation 

As described above, CGP can be described as an indirect context representation; the 
position a particular gene occupies in the chromosome has an influence on the result-
ing phenotype.  Ideally, the evolution of a system should be independent of the posi-
tion of genes within the chromosome, but should still be a result of the values of those 
genes.  This is termed an implicit context representation by Lones and Tyrrell [3], 
who have developed a form the conventional parse tree type GP that exploits this repre-
sentation, called Enzyme Genetic Programming (EGP). The biological inspiration for 
Enzyme GP is the metabolic pathway, and the role of enzymes which express computa-
tional characteristics. Implicit context representation employs an enzyme model com-
prising a shape, activity and specificities (or binding sites) [6], as shown in Fig. 1. 

Along with inputs and outputs, the enzyme model can be considered a program 
component from which a genetic program may be constructed.  The shape describes 
how the enzyme is seen by other program components. Similarly, the binding sites 
determine the shape (and hence type) of program component the enzyme wishes to 
bind to. Finally, the activity determines the logical function the enzyme is to perform.  
A typical EGP will comprise a set number of inputs and outputs and a number of 
enzyme models or components.  Values for each component’s binding sites and logi-
cal function are initialized non-deterministically; the component’s shape, however, is 
derived from a combination of its binding site’s shapes and logical function as shown 
in Fig. 2. In this example the conventional GP parse tree is formed through binding of 
sub-trees whose shapes match the binding site shapes of the AND component.  Con-
sequently, the shape of the AND component now represents the functionality of the 
whole tree below it. Once initialized, components are bound together to form a net-
work.  The order in which components are bound is determined by the closeness of 
match between one component’s binding site and another component’s shape. 

The best matching components are bound first and the process is repeated until a 
network has formed in which no further binding is possible. 

Over time, components may evolve through mutation.  Mutation is applied to the 
component’s binding sites and logical function with a pre-determined probability. 
When this occurs, a new component shape is derived accordingly and may lead to 
different binding between components occurring.  This in turn may result in a modi-
fied network. 
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Fig. 1. Enzyme model illustrating 
shape, activity and specificities 
(binding sites) [6] 

Fig. 2. Calculation of a component’s shape from its 
binding site shapes and logical function [6] 

3   Implementation of Implicit Context Representation in CGP 

The aim of the work described here is to combine the benefits of an implicit context 
representation with CGP and, hence, address the undesirable positional dependence 
expressed by CGP. 

The processing elements within the CGP are particularly suited to the implicit con-
text representation.  However, instead of employing a parse tree arrangement, the 
existing CGP Cartesian arrangement is maintained.  There is also significant differ-
ence in the manner in which components are initialized, selected and interconnected 
within the representation. 

3.1   Network Structure 

A predetermined number of functional components are generated to form the net-
work. Each component has the same (predetermined) number of binding sites, a func-
tion and a shape.  The binding sites facilitate binding to other components and hence 
provide input values to which the selected function is applied.  All shapes share a 
common format and consist of a number of dimensions which represent the different 
inputs and functions available within the network.  For example, a network that has 
three inputs and a choice of four functions will employ a shape with seven dimensions 
for each component. Each dimension within the shape contains an integer value be-
tween 0 and 255 that represents the strength of that input or function expressed by the 
component.  This is illustrated in Fig. 3.  

The component’s shape is derived from a combination of the component’s binding 
sites’ shapes and the component’s function index (using a value of 255 in the relevant 
dimension) as shown in Fig. 4.  

Formation of a component’s shape in this way not only describes the functionality 
of the component itself, but also those components which the binding sites have a 



 Positional Independence and Recombination in CGP 355 

desire to bind to.  In this way, a shape gives a description of the functionality of the 
desired network to be formed from this point onwards. 

The problem to be addressed will normally dictate the number of input and output 
components that the representation will employ, e.g. even parity 3 will require three 
input components and one output component. Input components differ from others in 
that they have no need for binding sites or a function.  They do, however, still have a 
shape which describes the respective input component.  Conversely, output compo-
nents have a binding site and function, but no shape. 

     

Fig. 3. Implicit context representation CGP com-
ponent showing multidimensional shape and 
binding sites 

Fig. 4. Derivation of the component’s 
shape from the component’s function 
and binding sites’ shapes 

3.2   Component Initialisation 

All functional and output components have their binding sites initialised by assigning 
random values. A component’s function is also assigned randomly from a predeter-
mined set.  Each component’s shape is then derived from a combination of its func-
tion and binding sites’ shapes as shown in Fig. 4. 

3.3   Network Formation 

Initialisation of the network is similar to that employed in conventional CGP.  Com-
ponents populate the specified Cartesian graph (e.g. four rows by six columns) and 
the shape of each component is initially bound randomly to the binding site of another 
component. However, it should be noted that as more than one component’s shape 
may be bound to a single binding site, so it is not necessarily the case that every com-
ponent’s binding site is utilised. To encourage stability in the early evolution of the 
network, during the initialisation process, the dimension of a binding site is replaced 
with that of the shape to which it is bound, providing a perfect bind. 

During evolution, formation of the network follows more closely that described in 
Section 2. Binding of components in the CGP network begins with the assignment of 
an output component that will ultimately provide the resulting value for the problem 
under consideration. The binding site of the output component is then made active 
and will bind to the component shape which exhibits the closest match. This is simply 
determined by summing the difference between each relative pair of dimensions 
within the vector for one component’s binding site and another component’s shape.  
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Fig. 5a. Components are arranged, unbound, 
in the desired Cartesian arrangement 

Fig. 5b. Starting at the Output component, 
binding sites are bound to the component’s 
shape with the “best fit” 

  

Fig. 5c. Binding sites for each component 
bound are then bound to further components 
on a “best-fit-first” basis 

Fig. 5d. When no further binding can take 
place, the network can be evaluated 
 

The combination of component shape and binding site that exhibits the smallest dif-
ference can be considered to be the “best fit”. 

Once bound, a component’s binding sites will also become active and will bind in 
the same way to other components located in columns to the left.  This continues until 
all components have been bound. A simple example is provided in Fig. 5. 

The particular Cartesian arrangement specified constrains the manner with which 
the formation of the network takes place. Successful binding of a new component 
may only take place if it is within a set number of columns to the left of the existing 
component. If this is not the case, then binding with an existing, suboptimal fitting 
component will occur. 

This follows the constraints imposed in the conventional GCP representation, 
specifically that any newly bound component must be placed to the left of the existing 
component. Additional constraints may also be applied, such as specifying a 
maximum distance between bound components, in terms of the number of columns 
separating them. Similarly, input components may also be constrained, if required, so 
they may only be bound to components a certain number of columns to their right in 
the representation, again to reflect the limitations of the target hardware infrastructure. 

Once all possible binding has completed, a network description is generated which 
describes the network in the same manner as for conventional CGP and the fitness of 
the resulting network is calculated in the normal way. 

The above process is repeated for each individual in the population and selection 
criteria for the next generation may be applied as required.  Evolution of the selected 
individual, is however, different to that undertaken in conventional CGP. The concept 
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of mutating both the connections and function of a component is maintained, but in 
the implicit context representation this is performed by mutating the component’s 
binding sites and function in a non-deterministic manner.  

As stated earlier, recombination is not usually undertaken in conventional CGP 
because it has not been found to improved performance, possibly because of arbitrary 
references that the indirect representation facilitates.  However, now an implicit 
context representation has been adopted, recombination should, in theory, increase 
performance of the program; its implementation is described below. 

Once mutation and recombination has been completed, the component’s activity 
shape needs to be recalculated to represent any changes that have subsequently 
occurred. A new network can then be formed by rebinding components; again on a 
“best fit first” basis as previously described. 

3.4   Mutation 

Two separate mutation operations are performed according to predefined probabili-
ties: (i) to the binding sites of the components and, (ii) to the index that selects the 
component’s function from those available.  Once these mutations have been per-
formed, new shapes for each component are derived as described in Section 3 and 
shown in Fig. 4. 

3.5   Selection Scheme 

A conventional, q-tournament selection scheme is adopted; one of the advantages 
being that it does not require a global fitness comparison of all individuals in the 
population. From the population, a group of q individuals is randomly chosen (where 
q is the tournament size). The fittest individual from the tournament group will be 
selected and placed in a pool for recombination. The process is repeated until the 
required number of individuals has been attained. Experimentation suggests that for 
this application, a 9-tournament scheme is most likely to provide best performance for 
both maximum and average fitness over 20 runs.  

3.6   Crossover Operator 

An important benefit of an implicit context representation is that recombination sup-
ports meaningful variation filtering, i.e. the effects of inappropriate variation events 
are suppressed, whilst promoting meaningful change, leading to fitter solutions. For 
the implicit context representation of CGP described here, a conventional 2-point 
crossover was used to exchange components available to the two individuals. This is 
simply implemented as each component available to each individual is held in a se-
quential list. 

4   Experimentation and Results 

The performance of the implicit context representation version of CGP was compared 
with conventional CGP using the even-3 parity problem. This Boolean function out-
puts a one if an even number of its inputs are one, otherwise it outputs zero. The 
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primitive function set used to evolve a solution to even-3 parity was {AND, OR, 
NAND, NOR}. It is well known that evolving a correct even-3 parity function is 
difficult using this function set [19].  

To measure the difficulty of evolving these functions the minimum computational 
effort measure described by Koza [19] was employed. This calculates the minimum 
 

Table 1. Parameters for both conventional and implicit context representation CGP 

Parameter Value 
Problem Even-3 parity 
Population size 25 
Number of generations 10000 
Number of runs 100 
Levels back 1 
Available functions AND, OR, NAND, NOR      
Function mutation rate 2.0%-4.0%* 

Binding site mutation rate 2.0%-4.0%* 
Crossover rate 60% 
q-tournament 9 
Mutation rate 4.0%-10.0%*  

        (*depending on network configuration) 
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Fig. 6. Comparison of performance of conventional and implicit context representation CGP 
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number of genotype evaluations required to give a 0.99 probability of success in an 
evolutionary run. The performance of the implicit context representation of CGP was 
compared with that of conventional CGP over 100 evolutionary runs for a range of 
network topologies from 4 rows and 4 columns to 4 rows and 10 columns. 

Common parameters for both conventional and implicit context representation 
CGP are listed in Table 1. 

Results for 100 runs of both conventional and implicit context representation CGP 
on the even-3 parity problem, over a range of Cartesian configurations are shown in 
Fig. 6. The implicit context representation version of CGP can be seen to outperform 
the conventional form over all network topologies. 

5   Conclusions 

The work described here is intended to demonstrate that positional independence is an 
important feature in evolutionary computation and that when implemented in Carte-
sian genetic programming, leads to better performance by supporting constructive 
recombination. It is accepted that the performance benefits reported in Section 4 are 
probably outweighed by the additional processing required to form the network.  
However, more demanding problems are being investigated which will make this an 
acceptable overhead. 

The principle of self-organising networks is being investigated further with respect 
to the optimum topology for the particular problem in hand and the mechanism by 
with the network is formed.  These, in combination with more conventional parame-
ters such as mutation and crossover rates have a fundamental effect on the perform-
ance of the algorithm. 
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Dioşan, Laura 97

Essam, Daryl Leslie 280
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